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A theoretical model for resonant Raman scattering by two optical phonons in zincblende-type
semiconductors is presented. The e�ect of Coulomb interaction between electrons and holes
is taken into account by introducing discrete and continuous excitonic intermediate states.
The model can be applied for laser frequencies below and above the band gap. We consider
deformation potential and Fr�ohlich interaction for the electron-one-phonon coupling. The
absolute value of the scattering e�ciency is evaluated for the two-LO-phonons, TO- plus
LO-phonon and two-TO-phonons Raman processes, around the E0 absorption edge of II-
VI compound semiconductors. Comparison with the electron-hole uncorrelated theory and
experimental data emphasizes the role of the excitonic e�ects.

I. Introduction

Many theoretical attempts to interpret experi-

mental results of resonant Raman scattering (RRS)

have followed since the pioneering works in the early

sixties[1]. More recently, absolute value measurements

of �rst- and second-order RRS in III-V and II-VI semi-

conductors have become available. It has been only

during the last ten years that a systematic experimen-

tal work on this direction has been performed[2]. In

particular, a complete set of measurements of one- and

two-phonon RRS measurements around the E0 and

E0 + �0 critical points (cp's) in several semiconduc-

tor compounds of zincblende structure is available at

present. To reproduce the experimental pro�les of the

measured Raman scattering e�ciency (RSE) is a chal-

lenge for every theoretical model since it allows to se-

lect the most adequate. Moreover, from a quantita-

tive comparison with the experiment, detailed infor-

mation about the electron-phonon interactions can be

extracted and the role of the intermediate electronic

states involved in the scattering process can be clari-

�ed. Theoretical models covering most of the aspects

of one-phonon RRS, which take into account excitonic

e�ects for the intermediate states of the electronic sys-

tem, have been subsequently developed[3]. The models

reproduce the experimental absolute values of the Ra-

man e�ciency as well as the resonance pro�les (scat-

tering e�ciency vs incident photon energy) for several

III-V and II-VI semiconductor compounds. It is well

known, however, that second-order RRS presents dis-

tinctive features as compared to �rst-order RRS. The

main peculiarity is that, whereas in the latter process

only phonons with nearly equal zero wave vector par-

ticipate in the scattering process, in the former one the

phonon wave vectors are only restricted to have equal

magnitude and opposite directions. Therefore, second-

order RRS covers a wider range of phonon wave vectors

and the RSE pro�les are a�ected by the q-dependence

of the electron-phonon coupling. The aim of the present

work is to develop a theoretical model for the RRS by

two optical phonons. Of particular signi�cance is the

choice of exciton states as virtual intermediate states in

the Raman process.

We consider a crystalline solid, with electronic and
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vibrational subsystems, under the action of a trans-

verse electromagnetic radiation �eld. The unperturbed

Hamiltonian describing these three noninteracting sub-

systems can be generally written as:

c

Ĥ0 =
X
�;e�

~!(�) âe� (�)
y âe� (�) +

X
q;�

~!�(q) b̂�(q)
y b̂�(q) +

X
K;�

E�(K) d̂�(K)y d̂�(K) : (1)

d

The �rst term is related with the isotropic radia-

tion �eld (photons with wave vector �, unit polarization

vector e�, and frequency !(�) = j�j�c=�, where �c is the

velocity of light in vacuum and � is the refractive in-

dex). The second term describes the lattice vibrations

(phonons belonging to the branch �, with wave vector

q and energy ~!�(q) ) while the third one represents

the excitations of the electronic subsystem, which we

suppose to be Wannier-Mott excitons, characterized by

a well de�ned wave vector K and other quantum num-

bers labelled by � � (v; c; �), v and c indicating the

valence and conduction bands forming the exciton and

� being the quantum number associated with the rel-

ative motion between the electron and the hole. The

energy E�(K) of these excitations can be expressed as:

E�(K) � E
(vc)
� (K) = E(vc)

g +�E
(vc)
� +

~
2K2

2M (vc)
: (2)

Here, E
(vc)
g is the gap energy between the bands form-

ing the pair, M (vc) = mv +mc the total exciton mass

(mv and mc are the e�ective masses of the hole and the

electron, respectively) and �E
(vc)
� is an energy term

associated with the relative motion of the exciton. The

bands are assumed to be isotropic and parabolic.

The perturbation Hamiltonian ĤI , containing the

interaction terms, can be decomposed as:

ĤI = ĤE�R + ĤE�L ; (3)

where ĤE�R corresponds to the interaction between

the electronic system and the radiation �eld and ĤE�L

is the interaction Hamiltonian of the electronic system

with the lattice vibrations. The form of the matrix el-

ement for the interaction between the excitons and the

radiation �eld, for allowed direct transitions, is[4]

T (e�)
� (�) =

�
e

m0

� s
2�~

!(�)�2
hc je� � p̂j vi '�(0)� :

(4)

'�(r) is the exciton envelope wave function, m0 and �e
are the free electron mass and charge.

For the interaction between the excitons and

long-wavelength optical phonons, the coupling factor

S
(�)
�;�0(K;K0) can be written in terms of the usual

electron-phonon interaction potential ��(�), following

Toyozawa's procedure[1;5]:

c

S
(�)
�;�0(K;K0) =

D
c0
�����(�)��� cE �v;v0 I�;�0

�
�q(e)

�
� �c0;c

D
v
�����(�)��� v0E I�;�0

�
q(h)

�
: (5)

The �rst term in Eq. (5) refers to the scattering by the electron and the second one corresponds to the scattering

by the hole. The vectors q(e) and q(h) are de�ned as:

q(e) =
mv

mv +mc

K � mv0

mv0 +mc0
K0 ; q(h) =

mc

mv +mc

K � mc0

mv0 +mc0
K0 : (6)

d
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The matrix element between the envelope functions

is:

I�;�0 (q) =

Z
d3r '

(v0c0)
�0 (r)� eiq�r '

(vc)
� (r) : (7)

Two kinds of electron-phonon interaction of very

di�erent nature are taken into account (��(�) = ��
(�)
DP+

��
(LO)
F ��;LO). On one hand, we have the deformation

potential interaction, ��
(�)
DP (� = LO; TO), related to

the distortion caused by the phonons on the crystalline

potential probed by the electrons. In polar materials,

there exists also the Fr�ohlich interaction, ��
(LO)
F , which

couples the lattice with the electrons via the electric

�eld created by the LO-phonons.

The deformation potential electron-phonon interac-

tion, for diamond and zincblende materials, ��(�)DP , is

given by:

c

D
v0
�����(�)DP

���vE =
�u0
p
3

2a0

D
v0
���D̂(�)

h

��� vE ; �u0 =

r
~Vc

2VM�!�
; (8)

where a0 is the lattice constant, Vc = a30=4 the volume of the primitive cell, V the crystal volume,M� the reduced

mass of the atoms contributing to the optical mode, and D̂
(�)
h the deformation potential as de�ned by Bir and

Pikus[6]. For Fr�ohlich interaction:

D
j
�����(LO)

F

��� j0E =
1p
V

C�
F

jqj �j;j0 ; CF = �i
s
2�~!LOe2

�
1

"1
� 1

"0

�
; (9)

d
"0 and "1 being the low frequency (static) and high

frequency (optic) limits of the dielectric function, re-

spectively. In covalent semiconductors, such as Si and

Ge, ��
(LO)
F vanishes and ��(�) becomes ��

(�)
DP .

The Raman process by two phonons can be inter-

preted as an elementary quantum transition between

the initial state

jIi = jIiR 
 jIiL 
 j0iE (10)

and the �nal state

jF i = âes(�s)
y b̂�2(q2)

y b̂�1(q1)
y âel(�l) jIi : (11)

jIiR and jIiL are the initial states of the radiation �eld

and the vibrational system, respectively, in the occupa-

tion number representation, j0iE the electronic ground

state (a set of �lled valence bands and empty conduc-

tion bands) and the subscripts l and s refer to laser and

scattered radiation, respectively.

The measured quantity in a Raman scattering ex-

periment is the scattering e�ciency, which can be writ-

ten in terms of PFI , the probability per unit time for

the quantum transition from jIi to jF i[7]:

d2S

d
sd!s
=

V

(2�)3
!3
s

!l

�l�
3
s

�c4

X
F

PFI : (12)

The sum over �nal states, in the case of second-order

RRS, is a sum over phonon wave vectors (
P

F =
P
q);

in the dipole approximation �l ' 0 ' �s. A second-

order Ramanprocess can be treated in fourth-order per-

turbation theory, and the probability amplitudeWFI is

then given by

c

WFI =

�
F

����ĤI

1

~!l � Ĥ0

ĤI

1

~!l � Ĥ0

ĤI

1

~!l � Ĥ0

ĤI

���� I
�

;

which is related to PFI through the Fermi Golden rule.

The �nal expression for the RSE is:

dS

d
s

= r2e

�
!s
!l

�2
�s
�l

Z
d3q

(2�)3

���W(�1;�2)(q)
���2 ; (13)
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W(�1;�2)(q) =
X
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hc1 jel � p̂j v1i hv3 je�s � p̂j c3i
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'�1(0)
�
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�
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S
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�2;�3(�q; 0)
~!l � ~!�1 � ~E�2(�q)

+

�
�1 $ �2
q$�q

�#
; (14)

d

where re = e2=m�c2 is the classical electron radius and

the complex energies ~E�(K) � E�(K)�i��(K) include

the broadening ��(K) of the excitonic states. The con-

servation of energy, ~!s = ~!l � ~!�1 � ~!�2 , is implic-

itly understood. This expression allows to treat in a

uni�ed manner the Raman scattering by LO and TO-

phonons. Three cases can be distinguished experimen-

tally because of their di�erent Raman shifts:

A. RRS by one LO- and one TO-phonon.

The TO-phonon is necessarily emitted via defor-

mation potential interaction, but there are two

possibilities for the LO-phonon emission. It can

occur i) via deformation potential (LO(DP ) +

TO(DP ) ) or ii) via Fr�ohlich interaction (LO(F )+

TO(DP ) ).

B. RRS by two LO-phonons.

In this case, several possibilities exist: i) the

two LO-phonons can be emitted via the same

interaction, either Fr�ohlich (2LO(F ) ) or defor-

mation potential interaction (2LO(DP ) ) or ii)

each phonon is scattered via a di�erent interac-

tion mechanism (LO(F ) + LO(DP ) ).

C. RRS by two TO-phonons.

Here the scattering of the two phonons is nec-

essarily via deformation potential interaction

(2TO(DP )). The 2TO(DP ) process is isomor-

phic to the 2LO(DP ) one: if the bands mediat-

ing the process are the same, one does not expect

di�erent features as far as the shape of the res-

onance pro�le is concerned. The only di�erence

is that in the Raman spectrum the corresponding

Stokes shifts would be di�erent.

To illustrate the theoretical results we choose the

parameters of a zincblende compound semiconductor,

namely ZnSe[8] . A zincblende semiconductor has three

valence bands: heavy holes (hh), light holes (lh) and

split-o� holes (so). Thus, three di�erent excitonic

branches (heavy, light and split-o� excitons) partici-

pate in the scattering process. Fig. 1 shows the res-

onance pro�le calculated around the E0 cp for three

kinds of Raman processes described above (2LO(F ),

LO(F ) + TO(DP ) and 2TO(DP )). We observe in all

of them a weak incoming resonance when the laser en-

ergy matches the 1s level of the exciton (~!l = E1s =

E0�Rhh , Rhh being the binding energy of the heavy ex-

citon) and a stronger outgoing resonance (~!s = E1s),

that occurs at di�erent laser energies depending on the

Raman process considered, due to the fact that the

phonons involved have di�erent energies. We note also

the relative importance of Fr�ohlich interaction as com-

pared to deformation potential: the most intense reso-

nance pro�le corresponds to 2LO(F ).

Figure 1. Calculated resonance pro�les of 2LO(F ), LO(F )+

TO(DP ) and 2TO(DP ) RRS. The parameters used corre-

spond to ZnSe (Ref. [8]).
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Fig. 2 shows the comparison between the theoretical

model (solid lines) and the experimental results (full cir-

cles) obtained for the 2LO(F ) RSE in ZnTe[9]. In order

to emphasize the role of excitonic e�ects, we represent

also the results obtained by considering uncorrelated

electron-hole pairs as intermediate states in the Raman

process (dashed line)[10]. It is evident that the Raman

e�ciency obtained with the excitonic model is in much

better agreement with the experimental pro�le, both

in shape and absolute value, than the calculations for

uncorrelated electrons.

Figure 2. Resonant Raman scattering e�ciency for 2LO(F )

RRS in ZnTe around the E0 critical point. The horizontal

arrows indicate the scale (linear or logarithmic) to which the

di�erent curves refer. We need to multiply the theoretical

result only by a scale factor of 1.5 in order to achieve the

experimental absolute value.

In the foregoing discussion we have established a

general treatment enabling us to obtain the second-

order RSE including excitonic e�ects around the E0

and E0 + �0 cp's in III-V and II-VI semiconductor

compounds. To check its validity, the model has been

tested in ZnTe, where it succesfully �t the experimental

results.
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