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We calculate the electron-LO-con�ned-phonon scattering rates in GaAs- AlGaAs quantum
wells considering the inuence of nonparabolicity on the energy bands. A reformulated slab
model is employed to describe the con�ned phonon and a simple model is assumed to take
these nonparabolicity e�ects into account. An expression for the intra and intersubband
scattering rates in the extreme quantum limit is obtained. We �nd that the nonparabolicity
increasses signi�cantly the scattering rates in all transitions. Some scattering rates for
interface modes are also reported in order to evaluate the nonparabolicity e�ect on the total
scattering rates.

The subject of electron-phonon interaction in po-

lar semiconductor quantum wells has recently attracted

a great deal of interest. This is because electronic

properties such as the cooling of photoexcited carri-

ers, carrier tunneling and the mobility of high-speed

heterostructure devices are primarily governed by the

scattering of electrons by polar-optical phonons. Par-

ticular interest has been directed at the possibility that

LO-phonon con�nement may a�ect signi�cantly the

scattering rates. The electron con�ned LO phonon

interaction has been studied using either dielectric

continuum models[1;2] or microscopic lattice dynam-

ical models[3]. The macroscopic continuum models

are commonly employed in literature, and calculations

of electron-intra and intersubband scattering rates in

GaAs- AlGaAs quantum wells and superlattices due to

the con�ned phonons compare successfully with exper-

imental results[4;5]. On the other hand, is known that

the inuence of nonparabolicity of the energy bands on

the several electronic properties cannot be considered

negligible[6�8]. The energy of the bottom of an electron

subband in a quantum well can often be determined to

a reasonable accuracy by a simple parabolic E�k rela-

tion. For subbands fairly far from the bulk conduction

band edge, corrections due to the nonparabolicity can

be important. The determination of electron-phonon

scattering rates in a realistic analysis has a great practi-

cal importance, particulary in carrier capture processes

with large kinetic energy. For these processes, which

implies large momenta, the parabolic-band approxima-

tion becomes less justi�ed even for GaAs-AlGaAs struc-

tures where nonparabolicity e�ects can be safely ne-

glected.

In this work, we have investigated the inuence of

subband nonparabolicity on the electron-LO-con�ned

phonon intra and intersubband scattering rates in

GaAs-AlGaAs quantum wells. We show also results of

scattering rates in the parabolic approximation in order

to make comparisons and show that important quanti-

tative di�erences occur, in this way we are able to deter-

mine for which situations the subband nonparabolicity

can be neglected or not.

Several schemes have been proposed to take these

nonparabolicity e�ects into account[9�11]. The more

important di�erence between those models is the form

of the nonparabolic energy dispersion relation and the

de�nition of the appropiate boundary conditions and

e�ective masses. For the description of band non-

parabolicity we follow the model proposed by Nag and

Mukhopadhyay[11] which is thought to adequately rep-

resent the subband nonparabolicity of GaAs-AlGaAs

quantum wells, the nonparabolic E�k relation is given
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by
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where E is the total electron energy, m�i is the band

edge mass and i the nonparabolicity parameter. The

subscript i indicates the well layer (i = W ) and the bar-

rier layer (i = B) and Vi is the bulk conduction band

o�set taken as Vw = 0 and VB = V0.

The electron-LO-con�ned phonon scattering rates

are obtained from the Fermi golden rule and with

the well known electron-con�ned-phonon interaction

Hamiltonian[12;13], we obtain the following expression

for the intra and intersubband nonparabolic scattering

rates
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with
�i = [(2k2z � 1)2 + 4Q2

i ]
1=2 ; (3)

d

where kz is the z-component of the initial (�nal) elec-

tron wave vector for intrasubband (intersubband) tran-

sitions, and Gn is the electron-phonon overlap integral.

For phonon emission we de�ne

Q2
i = �

2m�i
~2

(Einitial � E�nal � ~!LO) ; (4)

where the upper sign corresponds to intrasubband tran-

sitions, while the lower sign corresponds to intersub-

band transitions. Further parameters in Eq. (2) are

de�ned in previous works[2;14].

An elementary application of L'Hopital rule shows

that in the limit  ! 0 the Eq. (2) becomes the

parabolic scattering rates expressions reported in the

literature[1;2]
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The an and bn constants are obtained from the nor-

malization of the phonon displacement and depends on

the description of the con�ned phonon modes. For the

description of the con�ned phonon modes we used the

corrected slab model[15] which gives scattering rates

very close to the phenomenological Huang and Zhu

model[16] and compares successfully with experimen-

tal results[4;5]. However, any con�ned phonon model

can be used for the scattering rates given in Eq. (2),

by using the appropriate expressions for the coe�cients

an and bn and the electron-phonon overlap integral Gn

[2,14]. The expression for the scattering rates given

by Eq. (2) is consequence exclusively from the non-

parabolic energy dispersion relation given by Eq. (1),

no aditional assumptions about the model which cal-

culates the energy eingenvalues and eigenstates was so

far.

In order to obtain the electron energy levels and

wave functions we use the model proposed by Nag and

Mukhopadhyay[11], this model has the advantage that

the overlap functions have the same analytic form of the

parabolic case, thus it allows a straightforward inclusion

of the nonparabolicity e�ects into existing parabolic-

band calculations[1;2].

We express our results as an average scattering rate

W = pWW (W ) + pBW
(B), where pW (pB) is the prob-

ability of �nding the electron initially in the well (bar-

rier) subband. This procedure is necessary because the

e�ective masses as well as the nonparabolicity parame-

ters in the well are di�erent from those of the barrier.

For the calculations of scattering rates due to emis-

sion of con�ned longitudinal optical phonons we assume

a GaAs-AlxGa1�xAs quantum well with �nite barriers

of 224 meV corresponding to x = 0:3. The material

parameters used in our calculations are: for GaAs, the

e�ective mass m� = 0:0665m0, the dielectric constants
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Figure 1. Scattering rates for (a) intrasubband and (b)
intersubband transitions in a GaAs-AlxGa1�xAs quantum
wells as a function of a well width. Solid lines contains non-
parabolicity dashed lines is parabolic calculation.

�0 = 12:35 and �1 = 10:48; the bulk phonon energies

~!LO = 36:8 meV and ~!TO = 33:29 meV, the non-

parabolicity parameter is taken as  = 4:9� 10�19 m2;

for GaAlAs, the e�ective mass m� = 0:0901m0, the

dielectric constants �0 = 14�12 and �1 = 10:07; the

phonon energies ~!LO = 46:97 meV and ~!TO = 44:77

meV, the nonparabolicity parameter  = 2:67� 10�19

m2. The phonon occupation number is assumed NLO �

0: In Fig. 1(a) we show the calculated scattering rates

for intrasubband transitions due to LO-phonon as a

function of the well width. The solid lines represent

the scattering rates with the inclusion of subband non-

parabolicity an the dashed lines are for the parabolic-

band approximation. Note that the scattering rates are

signi�cantly increased in all intrasubband transitions

due to e�ects of nonparabolicity, especially for transi-

tions in higher subbands, but the scattering rates are

otherwise not qualitatively di�erent from those in the

parabolic- band approximation. Intersubband scatter-

ing rates are shown in Fig. 1(b), where we �nd a simil-

iar behaviour, but the scattering rates are less a�ected

than intrasubband transitions when the well thickness

increases. For large quantum wells where the subband

separation becomes close to the LO-phonon energy, the

phonon in-plane wave vector becomes zero and thus the

e�ect of nonparabolicity should be small. The intersub-

band 2! 1 transition shows this behaviour.

Figure 2. Ratio of the nonparabolic and parabolic scatter-
ing rates, for the intra and intersubband transitions shown
in Figs. 1(a) and 1(b) as a function of the well width.

The e�ect of the subband nonparabolicity is better

illustrated in Fig. 2 where we display the ratio of the

nonparabolic and parabolic scattering rates [Wnp=Wp]:

Except for 1! 1 transitions for narrow wells (less than

15 �A) all nonparabolic scattering rates are higher. For

quantum wells larger than 150 �A the transition rates
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with subband nonparabolicity are very close to those

in the parabolic-band approximation. In general, for

transitions from higher energy states the subband non-

parabolicity a�ects the scattering rates more strongly.

The enhancement of the scattering rates with the in-

clusion of subband nonparabolicity results mainly from

a larger electron-phonon overlap as well as from

Figure 3. Total scattering rates for (a) intrasubband 1! 1
transition and (b) intersubband 2! 1 transition as a func-
tions of the well width. Transition rates for con�ned and
interface phonons are also showed. Solid lines are transi-
tions rates with subband nonparabolicity and dashed lines
are for parabolic bands.

a larger density of �nal electron states. This enhance-

ment occurs despite of the fact that the emitted con-

�ned phonons have a larger wave vector, due to the

nonparabolicity of the electron subband, which implies

in a smaller electron-phonon (Fr�ohlich) coupling factor.

For large quantum wells (> 150 �A) the nonparabolic-

ity e�ects are practically negligible. In this case as the

electronic con�nement is greatly reduced the subband

nonparabolicity has a smaller e�ect on the overlap inte-

gral In order to evaluate the e�ects the nonparabolicity

on the total scattering rates we have also calculated

the scattering rates for intrasubband ad intersubband

transitions due to electron- interface-phonons interac-

tion considering the nonparabolicity of the energy sub-

bands. In Fig. 3 we show the total scattering rates for

(a) 1 ! 1 and (b) 2 ! 1 transitions and the individ-

ual contributions of con�ned and interface phonons for

GaAs-Al0:3Ga0:7As quantum wells. In general the tran-

sition rates due to interface modes are lowered by the

subband nonparabolicity, in contrast to the increase by

con�ned modes. However, the decrease of nonparabolic

scattering rates due to interface phonons is not compen-

sated by the increase due to con�ned phonons except in

few special situations. Thus, the total scattering rates

also su�ers considerable changes induced by the inclu-

sion of subband nonparabolicity. The general decrease

of the interface-phonon scattering rates is due to the

decrease of the electron-phonon overlap integral as the

electron wave function moves away from the interfaces.

In conclusion, we have calculated the scattering

rates for intrasubband and intersubband transitions

due to electron-con�ned and interface-phonon interac-

tion in quantum wells, including band nonparabolic-

ity. It is found that for intra and intersubband transi-

tions due to emission of con�ned phonons the scattering

rates are signi�cantly increased, while that for interface

phonons the scattering rates are decreased. The total

scattering rates is considerable a�ected by the subb-

band nonparabolicity. In particular for higher subbands

the nonparabolicity e�ects becomes more important.
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