
144 Brazilian Journal of Physics, vol. 26, no. 1, March, 1996

Spin-orbit Splitting in the Conduction Subband

of Semiconductor Asymmetric Heterostructures

Erasmo A. de Andrada e Silva

Instituto Nacional de Pesquisas Espaciais - INPE

C.P. 515, 12201 S~ao Jos�e dos Campos, S.P., Brazil

Received July 21, 1995

It is presented here a study of the spin-orbit splitting in the electronic subbands of asym-
metric semiconductor heterostructures, due to the lack of mirror symmetry along the growth
direction. From the multi-band Kane model, the limits of validity of the popular one-band
e�ective mass Rashba model Hamiltonian are discussed and the breakdown of the so called
Ando's argument against the splitting is explained. It is shown in particular that the spin-
orbit parameter �so is not proportional to the average electric �eld. The splitting anysotropy
in k-space and the spin relaxation are also considered in connection with recent experiments.

I. Introduction

Contrary to the case of holes, the spin-orbit splitting

in the conduction subband of narrow gap semiconduc-

tor heterostructures has been a controvertial issue for

more than twenty years now. New and more precise

experiments probing the spin dependent static and dy-

namic properties of heterostructures have recently re-

newed the interest in the electron zero-�eld spin split-

ting problem[1�4], which is not fully understood yet.

Such spin-orbit splitting in the conduction subband

originates from the structure's lack of mirror symme-

try along the growth direction as well as from the lack

of inversion symmetry in the microscopic bulk poten-

tial of the III-V host semiconductor[2�5]. The spin-

orbit splitting due to mirror asymmetry in the con�n-

ing potential was �rst described by Rashba[6]. He intro-

duced a simple one band e�ective mass model, which

has since then been widely used to interpret the re-

sults of di�erent experiments[6�8]. Many are the evi-

dences to believe that the Rahba term gives the bigger

contribution to the splitting in the case of narrow-gap

heterostructures[2;5;8�10]. This term is however also the

one at the center of the discussion.

The �rst experimental attempts to estimate the

splitting obtained values that were much smaller than

those calculated theoreticaly[7;11�13]. A simple quali-

tative argument by Ando put in check the �rst calcu-

lations and seemed to support the experimentalits[14].

Ando's reasoning follows roughly as: as the spin-orbit

splitting results from the relativistic e�ect in which a

moving electron with nonzero k sees in its reference

frame the interface electric �eld transformed into a

magnetic �eld, it should be very small for the con�ned

states, since they see an average electric �eld equal to

zero.

Such argument was shown later to be oversimpli�ed,

in part in view of the later more accurate measurements

in which large splittings were observed with di�erent

techniques and in di�erent structures[3;7;10]. The only

existing formal comment on the so called Ando's argu-

ment consists in the observation that, in the case of a

position dependent e�ective mass, because of the spe-

cial boundary conditions, the e�ective mass equation

for the con�ned states, contrary to a true Schr�ondinger

equation, does not lead to the zero average electric

�eld condition[15;16]. Without entering into the prob-

lemof boundary conditions we show why such argument

breaks down.

We use the eight-band Kane model to derive and

discuss the limits of validity of the popular one band

e�ective mass Rashba model Hamiltonian. In the next

section we present the model and the splitting calcu-

lation. The solution with a hypothetical mirror asym-

metric quantum well (QW) exampli�es the breakdown
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of the Ando's argument. Before the conclusion, we

briey consider the magneto-oscillations, the splitting

anisotropy and the spin relaxation, all in connection

with recent experiments.

II. Conduction subband spin-orbit splitting

Two-dimensional electrons are usually described

with spin degenarate quantized sub-bands. The �rst

relativistic correction, represented by the spin-orbit

coupling term in the Schr�ondinger equation, lifts the

degeneracy of the non-zero wave vector states whenever

the structure is asymmetric or based on inversion asym-

metric bulk semiconductors. Here we are concerned

with the theory of this e�ect.

In the case of symmetric quantum wells, the spin-

orbit splitting is only due to the bulk asymmetry, and

can be taken into account within �rst-order perturba-

tion theory by simply computing the expectation value

of the so called k3 bulk term[17] with the unperturbed

subbands[18;19].

A. Rashba model Hamiltonian

The problem of the splitting in the case of asym-

metric semiconductor heterostructures is a more di�-

cult one. As mentioned above, there is a popular model

Hamiltonian to describe the experiments which reads:

H =
~
2k2

2m� + �so(k� ẑ) � � ; (1)

where � = �xx̂+�yŷ+�zẑ is the Pauli matrices vector,

k̂ is the unit vector along the growth direction and �so

is a structure parameter, sometimes called spin-orbit

coupling parameter.

This Hamiltonian for the parallel motion with spin-

orbit interaction was proposed by Rashba for the 2D

case using general symmetry arguments[6]. The prob-

lem of the motion along the growth direction is assumed

to be separated. The parameter �so has been deter-

mined experimentaly, but comparison with theory has

not been easy[3;20]. We obtain �so from the eight-band

Kane model.

B. k � p model

Working within the e�ective mass approximationwe

start from the analytic k�pmodel for the bulk dispersion

relations. We consider III-V semiconductor compounds

described by the eight-band Kane model. Making use

of its spherical symmetry, we choose the parallel wave

vector ~k along the x axis, so that the electron wave

function will be given by:

 (~r) = eikx
8X

j=1

fj(z)uj(~r); (2)

where the fj are the envelope functions and the uj

are the bulk Bloch functions at the zone center as in

Ref. [2]. They diagonalize the bigger, and the only one

considered here, term in the spin-orbit coupling. The

e�ective-mass Hamiltonian is block-diagonalized with

the following two 4�4 blocks corresponding to the two

electron or conduction subband spin state

c

H� =

0
BBB@

Ec[z] + V (z) P
�
d
dz �

k
2

�
�
p
3
2 Pk

Pp
2

�
d
dz � k

�
P
�
� d

dz �
k
2

�
Ev[z] + V (z) 0 0

�
p
3
2
Pk 0 Ev[z] + V (z) 0

Pp
2

�
� d

dz � k
�

0 0 Ev[z]��[z] + V (z)

1
CCCA ; (3)

d

where V (z) is the electrostatic space-charge or ap-

plied external potential, the momentummatrix element

P =
q

2
3

~

me

< iSjpxjX > (me being the bare elec-

tron mass) and Ec[z]; Ev[z] and �[z] represent the en-

ergy position of the band edges and the value of the

spin-orbit valence band energy splitting in tbe di�er-

ent semiconductor layers along the z direction. The k2

free particle term in the diagonal matrix elements is

neglected.

As in Ref. [2] we can eleminate the valence band

envelope functions from the multi-band e�ective-mass

equation and obtain the following Schr�ondiger like
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equation for the conduction band components:

c

�
�
~
2

2

d

dz

1

m(z; ��)
d

dz
+

~
2k2

2m(z; ��)
+ Ec[z] + V (z) � �(z; ��)k � ��

�
f� = 0; (4)

with

1

m(z; ��)
=
P 2

~2

�
2

�� � V (z)� Ev[z]
+

1

�� � V (z) �Ev[z] + �[z]

�
(5)

and

�(z��) =
P 2

2

d

dz

�
1

�� � V (z) �Ev[z]
�

1

�� � V (z) �Ev[z] + �[z]

�
; (6)

d

where �� are the spin dependent eigen energies, j�+���j
being the spin splitting; they all of course depend on

the parallel wave vector k.

Note that the Kane model gives no bulk spin split-

ting. The bulk k3 term comes from the interaction

with remote bands. Note also that the Rashba split-

ting proportional to � and to k is zero in the bulk

(V (z) = const:) and when � = 0: The spin-coupling

parameter in the Rashba model is then seen to be given

by �so =< �(z; �0) >; where <> means expectation

value in the unperturbed subband with energy �0:

C. Results

Fig. 1 shows the splittings obtained for both InAs

and GaSb heterojunctions with other large gap materi-

als. Equation (4) is solved variationally in the in�nite

barrier approximation[2]. The spin-orbit splitting at the

Fermi \surface" is plotted as a function of the surface

carrier density ns. The splitting is shown for kf along

three di�erent directions. The anisotropy we see is due

to the presence of the bulk k3 term included within �rst

order perturbation theory as mentioned above, and will

be further discussed bellow.

Following Ando's reasoning however one could think

that without wave function barrier penetration, as in

the in�nite barrier approximation, the splitting would

be overestimated. Avoiding the problem of boundary

conditions, we address this question by considering

Figure 1. Spin-orbit splitting at three points of the Fermi
\surface" along di�erent directions in k-space (indicated
in the case of GaSb), as a function of the carrier density
ns. The dashed line gives the isotropic contribution of the
Rashba term alone. Only the �rst subband is occupied.

an in�nite semiconductor under the following applied

hypothetical external QW[21]

V (z) = V0(1� e(z=c(z))
2

) ; (7)
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where c(z) = a�(�z) + b�(z); �(z) is the Heaviside

function. This is a simple continuous potential well

with continuous derivative, where the di�erence be-

tween parameters a and b gives the degree of its mirror

asymmetry at z = 0. With such a potential we solved

Eq. (4) and in Fig. 2 we show the obtained splittings

for the cases of �xed b = 100�A and a = 90; 10 and 5�A.

We �rst note that the a = 90�A quasi-symmetric case

leads in fact to very small splittings and that the split-

ting grows with decreasing a as a result of the increasing

mirror asymmetry (and con�nment). The small a case

resembles an abrupt interface. We also note that, in

agreement with other multiband calculations[13;20;22;23],

the spin splitting grows initialy linearly with k and then

tends to saturate. The most interesting conclusion one

can draw from these results comes however from the

comparisson with the in�nite barrier case, also plotted

in Fig. 2. Contrary to the common expectation one

sees only a small di�erence between the small a case

and the no penetration in�nite barrier case.

One can understand the above numerical results by

having a closer look at the analytic expression for the z

and energy dependent Rashba spin-orbit parameter �.

To simplify we set � = 1 and work within the 6 � 6

model. The reasoning and conclusions for the more ac-

curate 8 � 8 model are exactly the same. By noting

that for the con�ned electrons in Type I structures, as

considered here, ���V (z)=Eg is allways less then one,

we can write (6) as

Figure 2. Splittings obtained with the asymmetric potential
well in equation (7). The bulk parameters are those of InAs
and V0 = 400 meV. We have set b = 100�A and ploted the
results for di�erent values of a in �A. The solution with an
in�nite barrier at z = 0 is also shown.

c

�(z; ��) =
P 2

2E2
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�� � V (z)

Eg

�
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�� � V (z)
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d

where eE = d
dz
V (z) and we have set Ec = 0 and

Ev = �Eg for small values of k, in the well region we

have for the localized states in general �� � V (z)=Eg

much smaller then one and, in this case, the �rst term

above gives a good approximation to the in�nite se-

ries. The coupling parameter in the Rashba Hamilto-

nian only in this case can be approximated by

�so = �0 < E(z) > ; (9)

where < E(z) > is the average electric �eld. This

approximation will work well whenever the electron is

mainly localized in the well and the penetration of the

wave function in the barrier can be neglected. The pa-

rameter �0 in the eight-band model is given by[2]

�0 =
~
2

2m�
�

Eg

2Eg +�

(Eg +�)(3Eg + 2�)
e : (10)

In table I we list the values of �0 for di�erent III-V

compounds.

TABLE 1. Spin-orbit coupling parameter �0, as given
by Eq. (10), for di�erent III-V semiconductor com-
pounds. The bulk parameters used are are those
from the Numerical Data and Functional Relation-
ships in Science and Technology, eds O. Madelung,
M. Schultz and M. Weiss. Landolt-Bornstein (Spring-
Verlag, Berlin 1982).

GaAs InSb InAs GaSb

�0(e�A2) 6.0 498 114 33.1
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III. Experiments

The experimental evidences and studies of the

conduction subband spin-orbit splitting have been of

mainly three types:

A. Mogneto-oscillations

As in the bulk, the observed beating pattern in the

magneto oscillations (Shubnikov-de Haas, de Haas- van

Alphen, etc.) was the �rst clear manifestation of the

spin splitting in the conduction subband of asymmet-

ric semiconductor heterostructures. It was observed by

di�erent groups in di�erent structures[8;9;24] .

The theory was given in Ref. 2. We give here just

a brief outline. It starts with the determination of the

eigenstates in the presence of an external magnetic �eld

applied perpendicularly to the interface. The Hamilto-

nian projected into the 2 � 2 conduction band space

reads[2]

H =

 
�(k) + 1

2�g
�(k)B 
(~k) + i�sok�


y(~k)� i�sok+ �(k)� 1
2�g

�(k)B

!
; (11)

where ~k = ir+ e
~
~A; ~A being the vector potential of the

applied �eld; �(k) is the single particle spin independent

nonparabolic energy dispersion relation; � is the Bohr

magneton; g�(k) is the k-dependent e�ective g-factor;

k� = kx� iky;  is the bulk k3 material parameter and


(~k) =
1

4
(k+k�k+ � k3�) � k+q ; (12)

with q =< � d2

dz2 > : The two terms in the o�-diagonal

matrix elements represent the two mentioned contribu-

tions to the splitting.

With the numerical diagonalization of the above

Hamiltonian the magneto-oscillations can be more eas-

ily obtained by calculating the magnetization of the

two-dimensional electron gas (2DEG). The magneti-

zation as a function 1=B presents periodic modulated

oscillations. In Fig. 3 we show, together with their

power spectrum, the oscillations obtained for InAs het-

erojunctions with di�erent carrier densities. The power

spectrum is the absolute value squared of the Fourier

transform of the magnetization and is shown in units

of surface densities. As given from the semiclassi-

cal expression � = ns~�=e, the frequency in Tesla is

�[T ] = 4:13ns[10
11cm�2]. One should �rst note that

the oscillations in 1=B, within this range of carrier con-

centration, present a quite regular beating pattern. The

power spectrum shows two near frequencies correspond-

ing to the total number of carriers which occupy the two

spin-split subbands. Such frequencies occur at

n� =
1

(2�)2

Z
d~k�(�F � ��(~k)) ; (13)

which are the densities in the split bands. Their sepa-

ration produces the beatings, which increase with total

carrier density as a result of the increasing spin-splitting

at the Fermi energy shown in Fig. 1.

Figure 3. Obtained oscillating magnetization of the 2DEG
at the interface of an InAs based heterojunction with vary-
ing carrier concentration ns. On the left panel the beating
pattern is clearly evident. On the right panel we plot the re-
spective power spectrum in terms of surface density n. The
oscillation frequencies are shown as strong peaks.

The regular beating pattern in Fig.3 is a result of

the dominant Rashba contribution. The same reg-

ular beating was observed experimentaly with di�er-

ent asymmetric structures where the Rashba term

dominates[8;9]. It was shown in Ref. [2] that a strong

anisotropy in the splitting will lead to anomalous beat-

ing pattern in the magneto oscillations, but it has not

been observed yet.

B. Raman scattering

The most direct observation of the spin-orbit split-

ting has been with Raman scattering experiments[3;25].
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With this technique the k-space anisotropy, as pre-

dicted in Ref. [19], was �rst observed. The total spin

splitting is given by

�s(k; �) = 2
�
(2q2 + �2)k2 + �(k2 � 2q)k2

sin2� + 2(k2 � 4q)
k4

4
sin22�

�1=2
; (14)

where � is the angle between the parallel wave vector
~k and the x axis of the cubic crystal. This expression

has been con�rmed by �rst principle tight-binding cal-

culations and agrees with the observed splittings for

electrons moving along di�erent directions in a GaAs

asymmetric QW[3].

In Ref. [3] a spin-orbit coupling parameter �so =

�6:9 � 0:4 meV �A was determined. The sample used

was an asymmetrically doped thick GaAs quantum well

(negligible barrier penetration). The self consistent av-

erage space-charge electric �eld was calculated to be

< E(z) >= �1:06 mV/�A, what leads to �0 = 6:5� 0:4

e�A2: Eq. (10) gives a theoretical value of 6.0 e�A2. Con-

sidering more conservative uncertainties in the experi-

ment and uncertainties in the material parameters en-

tering the theorical value, we have here a very good

agreement between experiment and theory.

C. Anti-localization

Another set of experiments that probe the spin-orbit

splitting makes use of the quantum transport e�ect

known as anti-localization. The spin dephasing respon-

sible for the observed negative magnetoresistance (due

to antilocalization) has been shown to be due to the

precession of the electron spin around the spin splitting

e�ective magnetic �eld[10;26]. The spin dephasing rate

in this case follows the following motional narrowing

law[27]

t�1s = a
< �2

s >

4~2
t� ; (15)

where <> means now average over the Fermi \surface",

t� is the transport (or elastic) scattering time and a is

a parameter of the order of unit that depends on the

scattering mechanism.

In Fig. 4 we plot the average Dyakovov-Perel spin

relaxation time ts for the electrons at the Fermi \sur-

face" of an AlGaAs/GaAs heterojunction, as a func-

tion of the carrier density. Both contributions to

the spin-orbit splitting are important and have been

included[2;4]. We can see that ts is strongly dependent

on the energy of the electron. One goes from almost no

relaxation in the empty band limit to very high relax-

ation rates as the energy (and the splitting) increases.

The interpretation of the experimental data is however

not simple and is still under discussion[4].

Figure 4. Average D'yakonov-Perel electron spin relaxation
time ts at the Fermi \surface" of an AlGaAs/GaAs hetero-
junction with varying carrier concentration ns. We have
used a = 0:5 = 17eV �A3 and varied t

� between 1 and 3 ps.

IV. Conclusions

We can briey summarize our results as follows.

We have obtained from an eight-band Kane model the

spin-orbit splitting in the electronic subbands of asym-

metric QWs. We have made the connection with the

Rashba model and shown that the spin-orbit coupling

parameter is approximately proportional to the average

electric �eld only when wave function barrier penetra-

tion can be neglected. The values of the parameter for

di�erent III-V semiconductors have been given. One

should also keep in mind that the Rashba spin-orbit

coupling and the nonparabolicity corrections in the con-

duction subband are of the same order of magnitude[28].

Therefore a consistent and more precise Rashba model

should have a nonparabolic kinetic term replacing the

parabolic one in Eq. (1). The D'yakonov-Perel electron

spin relaxation time was shown to be highly dependent
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on the electron's energy. Finally we have also reviewed

the main experiments, which show a fairly good agree-

ment with the theory presented.
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