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Interaction of Noncommutative Solitons with Defects
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Interaction of solitons of noncommutative sine-Gordon model with potentials is studied by including a po-
tential through one of the soliton parameters. The bahaviour of non commutative solitons during the interaction
are compared with commutative solitons and the differences are explained.
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1. INTRODUCTION

Noncommutative field theories are interesting subjects in
the most of the branches of sciences. It has attracted a great
deal of attentions in recent years; however the development
of noncommutative field theory has a long history. There are
many of new works in the construction of Noncommutative
solitons and instantons [1, 2].

It has been shown that 1+1 noncommutative space-time
where the time is necessarily a noncommutative coordinate,
leads to nonunitarity and also lacks the causality [3, 4]. These
difficulties can be solved by using a suitable two-dimensional
Euclidean model. Integrebility of the model is another seri-
ous problem. After introducing the noncommutative case for
the field theory, obtained by considering the replacement of
the usual product of the fields by their *-product, some of the
models are still integrable while another are not. This problem
has been removed by several methods, for example redefining
the field equations by using a suitable generalization of the
zero-curvature technique [5].

Here we focus on a suitable version of noncommutative
sine-Gordon (NCSG) model. NCSG model is intuitively de-
fined as a model which reduces to the ordinary one when
non commutation parameter goes to zero. But the general-
ization of noncommutative version of the field theories is not
unique, as one may construct different noncommutative equa-
tions of motion which reduces to the same expression when
the noncommutative parameter vanishes. As we have men-
tioned before, a successful generalization of two-dimensional
integrable systems at the level of equations of motion can be
performed by using the zero-curvature method.

An interesting question is how noncommutativity could af-
fect on the dynamics of the soliton during the interaction with
a potential, which we will try to investigate the features of this
question.

This manuscript is organized as follows. In the next section
we will describe a suitable NCSG system and its solitonic so-
lutions. A model for soliton-potential system is explained in
section3. Interaction of non commutative solitons with a po-
tential barrier will be discussed in section 4. The behaviour
of a non commutative soliton during the interaction with a po-
tential well is explained in section 5 and Section 6 contains
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conclusion and remarks.

2. NONCOMMUTATIVE SINE-GORDON MODEL

The Lagrangian of the sine-Gordon model is

L =
1
2

∂µφ∂µφ−λ(1− cosφ) (1)

The usual noncommutative case of the model is obtained by
changing the ordinary product of the fields with the *-product
in the lagrangian (1) and consequently in the equation of mo-
tion. The result has causality problem and also it is not inte-
grable. The first problem can be solved by using Euclidean
space with the following components:

Z =
1√
2

(
x0 + ix1) , Z̄ =

1√
2

(
x0− ix1) (2)

non commutativity is encoded in the relation [Z, Z̄] = θ where
θ is a real parameter. With the above variables (1) reads

L = ∂φ∂̄φ+2λ(1− cosφ) (3)

where ∂ = ∂
∂Z and ∂̄ = ∂

∂Z̄ .
Integrability problem can be solved by using the bicom-

plex implemented method in noncommutative geometry for
the NCSG model, which has been fully demonstrated in [6].
The results are unexpected and differ from the ’natural’ gen-
eralized NCSG model. Indeed a system of two coupled equa-
tions of motion are produced which are describe the evolution
of the field

∂̄
(

e
iφ
2∗ ∗∂e

−iφ
2∗ + e

−iφ
2∗ ∗∂e

iφ
2∗
)

= 0

∂̄
(

e
−iφ

2∗ ∗∂e
iφ
2∗ − e

iφ
2∗ ∗∂e

−iφ
2∗

)
= iλsin∗φ

(4)

in which the *-product is defined as

( f ∗g)(Z, Z̄)= exp
(

θ
2

(
∂Z∂ξ̄−∂Z̄∂ξ

))
f (Z, Z̄)g(ξ, ξ̄)|ξ=Z,ξ̄=Z̄

(5)
In the limit θ → 0, the first equation becomes trivial and the
second equation reduces to the ordinary sine-Gordon equation
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as ∂∂̄φ = λsinφ. The field φ is a function of the noncommuta-
tive parameter θ and can be expanded in the orders of θ as

φ =
∞

∑
n=0

φnθn (6)

Note that the dependency to the parameter θ arises from the
expansion (6) and also from the definition of *-product in the
equations.

In the first order expansion of φ , we have φ = φ0 +θφ1. For
this situation equations (4) reduce to [6]

∂∂̄φ0 = λsinφ0
∂∂̄φ1 = λφ1cosφ0

(7)

and the constraint equation

∂2φ0∂̄2φ0−
(
∂ ¯∂φ0

)2
= 0 (8)

The solutions of the above equations are

φ

(
soliton
antisoliton

)

0 = (±)4arctan
(

exp
(√

2λ x1−x̄1−ivx0√
1−v2

))

φ1 = 1

cosh
(√

2λ x1−x̄1−ivx0√
1−v2

)

(9)
where x̄1 is the initial position of the soliton and ’v’ is its ve-
locity. The field φ1 is the first order correction generated by
noncommutativity to the Euclidean one-soliton solution of the
ordinary sine-Gordon model.

The topological charge for the noncommutative soliton can
be defined as [6]

Q =
1

2π

∫ ∞

−∞
dx1 ∂φ

∂x1 (10)

It is interesting to know that the equations of motion (7) can
be also derived from the action

S2=
∫

d2x
(

1
2

∂φ0∂̄φ0 +λ(1−cosφ0)+θ
(
∂φ0∂̄φ1 +λφ1 sinφ0

))

(11)
The energy density is calculated from (11) as following

H =
1
2

∂φ0∂̄φ0−λ(1− cosφ0)−θ
(
∂φ0∂̄φ1 +λφ1sinφ0

)
(12)

For the second order expansion of the φ respect to θ we
have

φ = φ0 +θφ1 +θ2φ2 (13)

With the following solitonic solution

φ

soliton
antisoliton

0 =±4arctan
(

exp
(√

2λ x1−x̄1−ivx0√
1−v2

))

φ1 = 1

cosh
(√

2λ x1−x̄1−ivx0√
1−v2

)

φ2(x1,x0) =−
√

2λ
2
√

1−v2
tanh

(√
2λ x1−x̄1−ivx0√

1−v2

)
(14)

Here we will work with the first order expansion of the field
with solution (9).

3. SOLITON-POTENTIAL SYSTEM

Scattering of commutative solitons (CS) from potentials
(which generally come from the medium properties) have
been studied in many papers by different methods. The ef-
fects of medium disorders and impurities can be added to the
equation of motion as perturbative terms [7, 8]. These effects
also can be taken into account by making some parameters of
the equation of motion to be function of space or time [9, 10].

We have added the potential through the parameter λ which
has been appeared in the solutions (9) and (14). λ is set as

λ =
{

1+λ0 |x|< w
1 |x|> w

}
(15)

where parameter ’w’ describes the width of the potential re-
gion. Clearly,λ < 0 describes a potential well while λ > 0
creates a barrier. We can also use another types of localized
functions for the parameter λ.

Equations (7) cannot be solved theoretically with a space
dependent parameter like (15), so we have to solve it numer-
ically. But we can use solution (9) as an initial conditions
for solving (7), if soliton is located far from the center of
the potential. We have performed simulations using 4th order
Runge-Kutta method for time derivatives. Space derivatives
have been expanded by using finite difference method. Grid
spacing h=0.01, 0.02 and sometimes h=0.001 have been used
in the simulations. Time step has been chosen as 1

4 of the
space step ’h’. Simulations have been setup with fixed bound-
ary conditions and solitons have been kept far from the bound-
aries during the simulation. We have controlled the results of
simulations by checking the conserved quantities: total energy
and topological charge, during the evolution.

4. INTERACTION OF A SOLITON WITH A BARRIER

First of all we need to know the shape of the potential. We
can place a static soliton at different places and find the total
energy of the soliton. This tells us what the potential is like
as seen by the soliton [10, 11]. Fig. 1 shows the effective
potential as seen by the soliton for an obstruction with λ0 =
0.2. The dashed line shows the commutative case (θ = 0)
and the solid line presents the situation for noncommutative
soliton with θ = 0.6. The energy of the commutative soliton in
the absence of the obstruction is E0. The dash-dot line shows
λ(x)+E0.

The total energy of a static commutative soliton in the ab-
sence of potential is 6.1699 and the total energy of a non com-
mutative static soliton with θ = 0.6 is 6.1602. The energy of
noncommutative soliton (NCS) is about 0.01 less than the en-
ergy of a commutative soliton (CS) on top of the barrier of
λ0 = 0.2. Therefore the effective mass of a NCS is less than
the effective mass of a CS.

Suppose a CS which is placed far away from the center of
a potential barrier which is located at the origin. The soliton
moves toward the barrier and interacts with it. There exist two
different kinds of trajectories for the soliton during the interac-
tion with the barrier (depend on its initial velocity) separate by
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FIG. 1: Potential as seen by the soliton. Dashed line shows the po-
tential for commutative soliton and solid line presents the situation
for noncommutative soliton. The dash-dot line is λ(x)+E0

a critical velocity vc. In low velocities vi < vc, soliton reflects
back and reaches its initial place with final velocity v f ≈−vi.
A soliton with an initial velocity vi > vc has enough energy
for climbing the barrier, and passing over the potential.

The behaviour of a NCS can be investigated with direct sim-
ulation of equations (7). The first equation of (7) is the equa-
tion of motion of commutative sine-Gordon soliton. Therefore
we can conclude that the general behaviour of a NCS is the
same as the above description for a CS. The critical velocity
can be found by sending a soliton with different initial speed
and observing the final situation after the interaction (falling
back or getting over the potential). Equations (7) also show
that the critical velocity for a NCS is the same as the critical
velocity of a commutative case.

Figure 2 shows the trajectory of commutative and noncom-
mutative solitons during the interaction with the barrier of
λ0 = 0.1. Solitons move with a same velocity when they
are far from the potential while CS travels ahead of the NCS.
Fig. 1 shows that the NCS peak is located somewhere behind
the CS peak after the interaction.

The difference between the energy of NCS and energy of
CS decreases when their initial velocity increases. So the ve-
locity of a NCS becomes bigger than the CS velocity during
the interaction with the barrier. Therefore the peak of the NCS
goes ahead of the CS peak. After the interaction solitons move
with a same velocity while the peak of the NCS follows the
NCS peak. Fig. 2 also shows that the distance between the
peak of the solitons increases when the non commutation pa-
rameter θ increases. Initial velocity in the above simulation
has been selected very near to the critical velocity.

Figure 3 presents the trajectory of CS and NCS during the
interaction with a barrier where the initial velocity is greater
than the critical velocity. Figs. 2 and 3 clearly show that the
interaction of NCS with a barrier is an elastic interaction sim-
ilar to what we can observe for the interaction of a CS with

FIG. 2: Trajectory of a commutative soliton (dashed line) and non-
commutative soliton with θ = 0.2 (solid line) and another NCS
with θ = 0.4 (dash-dot line). The initial velocity of the solitons is
v0 = 0.3045. The height of the barrier is λ0 = 0.1.

potential barrier. Also it can be concluded that a NCS makes
a deeper interaction with a potential barrier as compared with
a CS in a similar situation. The critical velocity can be found

FIG. 3: Interaction of CS and NCS with potential barrier. Initial
velocity is greater that the critical velocity.

by sending a soliton with different initial speed and observing
the final situation after the interaction (falling back or getting
over the potential). The first equation of motion (7) can be
solved separately. This means that the critical velocity is ob-
tainable by using a set of simulations in commutative space.
Therefore the critical velocity of a soliton during the inter-
action with potential in commutative and non commutative
space is identical.
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5. INTERACTION OF A SOLITON WITH A POTENTIAL
WELL

Suppose a point particle moves toward a frictionless poten-
tial well. It falls in the well with an increasing velocity and
reaches the bottom of the well with its maximum speed. After
that, it will climb the well with decreasing velocity and finally
passes through the well. The final velocity of the particle after
the interaction is equal to its initial velocity. But simulations
show that the interaction of a commutative soliton with poten-
tial well is not completely similar to the interaction of a point
particle with a potential well [10, 11].

It is clear that λ0 < 0 in the (15) corresponds to a potential
well. Like the case of the barrier, we can find the shape of the
potential as seen by the soliton with plotting the total energy of
a static soliton placed in different positions (x). Fig. 4 shows
the results for the obstruction with λ0 = −0.2 and θ = 0.6
(solid line). The dashed line in figure 5 presents the situation
of a commutative soliton (θ = 0) in the same potential well.
Soliton-well interaction is a complicated situation. Suppose

FIG. 4: The potential well λ0 = −0.2 with as seen by the soliton.
The dashed line shows the potential for CS and solid line presents
the situation for NCS. The dash-dot line is λ(x)+E0

a commutative soliton starts to move toward the well from
an initial position far from the potential region. In this case
again, there exists a critical velocity (vc) which separates two
different kinds of soliton behaviour. A Soliton with initial
speed above the vc, transmits through the well and a soliton
with initial velocity lower than the vc falls into the well and
becomes trapped by the potential. As mentioned before, the
critical velocity can be found by direct simulations with the
first equation of (7) and this parameter is identical.

Consider a soliton with an initial velocity greater than the
critical velocity. The soliton transmits through the well. The
final energy and velocity of the soliton after the interaction
is smaller than these quantities before the interaction. Fig. 5
presents the interaction of CS and NCS with the potential well
of λ0 =−0.2. Initial velocity of the solitons is v0 = 0.2. Fig. 5

clearly shows that the NCS radiates more amount of energy as
compared with the CS. Therefore the final velocity of a NCS
after the interaction is smaller than the final velocity of a CS in
the same situation. Fig. 5 also shows that the final velocity of
the NCS decreases when the noncommutative parameter theta
increases.

FIG. 5: Interaction of CS and NCS with the potential well. The initial
velocity is greater that the critical velocity.

Suppose a soliton with an initial velocity lower that the crit-
ical velocity. Both CS and NCS become trapped in the well
and oscillate there. In other words the situation for CS and
NCS is almost the same. Fig. 6 shows this situation. In other
words, the period of the oscillation is the same for a NCS and
CS in the same potential well.

FIG. 6: Interaction of a CS and NCS with a potential well. The initial
velocity is v0 = 0.05 (lower than the critical velocity).



Brazilian Journal of Physics, vol. 38, no. 4, December, 2008 615

6. CONCLUSIONS AND REMARKS

Interaction of a non commutative sine-Gordon soliton with
defects was investigated. The non commutative soliton is con-
structed in the first order of expansion, φ∗ = φ0 +θφ1.

A non commutative soliton interacts with a potential bar-
rier almost elastically. At low velocities it reflects back and
with a high velocity climbs the barrier and transmits over the
potential. Energy exchanges between the soliton and the bar-
rier during the interaction. The final speed of the soliton after
the interaction is almost equal to its initial speed with a very
good approximation. There exists a critical velocity which
separates these two kinds of trajectories.

But for the case of soliton-well interaction, we observe in-
teresting effects. A high speed soliton passes through the po-
tential well and a low speed soliton becomes trapped in the
well and oscillates there. In both situations the soliton emits
energy, so its energy decreases in time to a stable state. In the

noncommutative case the Soliton radiates more energy than
the same soliton in commutative space.

It can be concluded that a non commutative soliton has a
deeper interaction with defects. This means that the effective
potential in the non commutative case is greater than the ef-
fective potential in the commutative plane. Therefore the final
velocity of the soliton after the interaction in the non commu-
tative case is lower than the final velocity in a commutative
model. We expected to find an energy exchange between the
parts of the field in the non commutative soliton. Some very
interesting results can be related to such energy exchange. But
we could not find an energy exchange between the two parts
of the field in non commutative soliton in our simulations. It is
because of the smallness of non commutative parameter θ. It
is very interesting to study the phenomena with a suitable col-
lective coordinate system. But constructing such coordinates
needs more advanced investigations.
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