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A model of coupled vibrational modes, interacting through anharmonic effects and subject
tothe action of an external source of energy that drives the system away from equilibrium, is
considered. It is shown that the nonlinear equations that describe the dissipative evolution
of the macroscopic state of the system admit a solution which evidences complex behavior in
such system. It consists in the emergence of a phenomenon that resembles the Bose-Einstein
condensation in theideal gasof bosonsin equilibrium at low temperatures, but inthiscasein
nonequilibrium conditions, and, then, it impliesin atransition between dissipative structures
in Prigogine's sense. This paper presents a detailed extension of a short communication to

appear in Physica D.

I. Introduction

Nonlinearity in physical, chemical, and biological
systems is the source of new and unexpected complex
behavior. Complexity manifests itself particularly in
two Irind of situations related to dynamical systems:
One is chaotic behavior in mechanical systems, where
the idea that a system can be both deterministic yet
unpredictable is a novelty with healthy development in
recent years. The other is the case of open systems
driven far from equilibrium by intense external sources,
where it is possible to find the emergence of ordered
patterns at the macroscopic scalelll; the present paper
belongs to this area.

The concept that many-body systems sufficiently
far from equilibrium and governed by nonlinear ki-
netic laws may display self-organized ordered struc-
tures at the macroscopic level, as observed in many
cases, has been brought under unifying approaches such

as dissipative structures[z’:ﬂ, synergetics[‘ﬂ, and macro-

conceptst®l.

We dedl in this paper with a system of harmonic
oscillators (as vibrational modes) driven farther and
farther away from equilibrium by an external source
that pumps energy on thesystem, whileit isin contact
with an external thermal bath consisting of a system
of vibrational modes. Harmonic oscillators play an im-
portant role in the description of physical systems. we
can mention their fundamental role in the description
of lattice vibrationsin solids (phononsin the quantized
form), as wdl as in the description of the dynamics
o excitations lilre plasmons, polaritons, plasmaritons,
magnetoelastic waves, etc. They are also present in the
description of biomaterialsas normal mode excitations,
for examplein long chains of macromolecules coupled
by peptide groups sustaining dipolar oscillations. In
these materials (solid state or biological) high frequency
(infrared region) polar modes and low frequency acous-
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tic modes are usually present, both interacting through
anharmonic effects, like in the model presented in Sec-
tion V.

For the study of the dissipative systems of oscillators
described at the beginning of the preceding paragraph,
we resort to a seemingly powerful, and also elegant
and concise, mechano-statistical formalism, namely, the
Nonequilibrium Statistical Operator Method (NSOM).
It has been the object of several approaches which, as
we have shown!® can be placed within the context
of a unifying variational procedure based on Jaynes’
Predictive Statistical Mechanics). The NSOM allows
for the construction of a nonlinear quantum transport
theory - a far-reaching generalization of the Chapman-
Enskog's and also Mori’s methods - that describes the
evolution of the system at the macroscopic level in ar-
bitrar~nonequilibrium situations!®. Among the dif-
ferent NSOM we resort here to the use of Zubarev's
approachl® and what we have called fourth order ap-
proximation in the theory of relaxation (FOART for
short)®!, which introduces the nonlinearities responsi-
ble for the complex behavior of the system of nonequi-
librium oscillators.

We derive the equations of evolution for the popu-
lation of the vibrational modes characterized by afre-
quency dispersion relation. We take a periodic distri-
bution of the oscillating centers, and then the wave vec-
tor in the dispersion relation runs over a Brillouin zone,
like, for example, polar modes in solids(*® or dipolar vi-
bration centers in biopolymers!}], The bath, composed
of a subsystem of acoustic-like vibrations is assumed
to remain, through a very effective thermal contact, in
equilibrium with an ideal reservoir at temperature T.

In the next sections, after the derivation and dis-
cussion of the equations of evolution provided by the
NSOM-FOART we proceed to a numerical approximate
calculation, looking for the values of the populations of
the vibrational modesin the steady state in termsof the
intensity of the external energy pumping source. Our
results clearly evidence a complex behavior consisting
of a phenomenon conjectured by Frohlich!?) (we call it
Froklich effect) namely, that after a critical valuein the
intensity of the external pumpingsource isachieved, in
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a cascading-down process, the vibrational modes trans-
fer large part of the energy they are receiving to a
set of vibrational modes with the lowest frequencies
(those of large wave vectors at the zone boundary in
our model). Excitations are then accumulated in these
modes largely increasing the value of their populations.
In that way we have a steepily increasing population in
the vibrational states with the lowest energy at the ex-
penses of those with larger energies; there occurs then
a phenomenon akin to a Bose-Einstein condensation,
not for phases in equilibrium, but in nonequilibrium
dissipative structures. It should be stressed that this
notable and unexpected phenomenon isa result of non-
linearities in the equations of evolution that describe
the macroscopic state of the system as dissipative pro-
cesses develop init.

The paper is organized as follows: in the next sec-
tion it is presented a brief review of the theoretical
background to be used in the calculations. In Section
IIT we derive the equations of evolution for the vibra-
tional mode populations, and their general aspects are
discussed. In Section 1V we proceed to the presenta-
tion of numerical calculationsthat clearly characterize
the results. In the last section we briefly review and
comment the results.

I1. Theoretical background

The NSOM can be considered as a generalization
of the statistical formalisms based on Boltzmann and
Gibbs fundamental ideas. Different approaches have
been developed by several authors, relying on either
heuristic arguments, or using projection operator tech-
niques. A unifying approach based on a variational
principle is described in Ref. [6].

The NSOM is based, in any of its formulations,
on Bogoliubov’s assertion (principle of correlation
weakening)[!3] that in general there exists a hierarchy
of relaxation timessuch that as timegoes on the system
keeps loosing memory of the previous evolution, so that
an ever decreasing number of variablesisenough for the
description of the macroscopicstate of the system. This
contraction is connected with the separation from the
total Hamiltonian of strong interactions with certain
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symmetries'4; tliese interactions are those related to
the fast relaxing processes. In the contracted descrip-
tion, tlie macroscopic state of the system is character-
ized by a reduced set of tliermodynamic variables, say
Q;(t) with j = 1,2,...,n, which are the average values
with the nonequilibrium statistical operator (NSO) of a
corresponding set of dynamical variables P;, the NSO
being a functional of tliese and only tliese variables.
The clioice of these variables is not unique and one
of tlie fundamental questions of tlie theory consists in
defining in some sense tlieir completeness!'. One way
to perform sucli choice, associated to tlie NSOM, wliicli
isshown to be closely connectecl with phenomenological
irreversible thermodynamics!*®l, is based on tlie sepa-
ration of tlie total Hamiltonian into two parts, namely

H=Hy+H', (1)

where H, contains tlie liinetic energies and the part
of the interactions that produce very rapid relaxation
processes, and H' is related to the ow relaxation pro-
cesses. Further, quantities P; and the relevant part of
the Hamiltonian, Hy, are connected by what we term
Peletmiiidliii-Ziibarev's symmetry condition, nainely

[P}, Ho) :Zajkpk ) (2)
k=1

in an appropriate quaiitum representatioii, and where
aji are c-numbers. In this way it may be said that tlie
fast relaxing variables have been eliminated froin tlie
clescription and tlie macrostate of the system is charac-
terized in terms of tlie contracted description generated
by tlie set of dow relaxing variables.

As already mentioned, the NSOM can be brought
under a unifying approach resorting to a variational
principle, namely Jaynes’ principle of maximization of
information entropy!”, with memory effects and ad hoc
hypothesist®l. The process consist in maximizing Gibbs
functional

Sa(t) = =Tr{p(t)Inp(t)} 3)
where p istlie NSO, suhject to tlie constraints that tlie
set of macrovariables ¢J;(t) are those that properly de-
scribe the macroscopic state of tlie system, and that

Q; (") =Tr{Pp(t')} (4)

wliere tp < t' < t, with ¢y being the initial time o
preparation of tlie system and t the time a measure-
ment is performed. Eq. (4) introduces a dynamical
character in the information (after-effects) since these
coiiditions involve tlie evolution of tlie system from tlie
initial time of preparation ¢y (to be understood as much
larger than the relaxation times in Bogoliubov's hier-
archy associated to the principle of correlation weak-
ening) up to timet. Tlie formal character of Egs. (4)
must be noticed, where one makes the assumption that
there is a knowledge of the values of variables Q; on
tlie time interval (to,t). However, this information-
gathering interval can, and should, be reduced to infor-
ination recorded at a unique time: the formalism pro-
duces equations of evolution for variables @;(¢) whicli
givetlieir values at any timet > ¢, , once initial values
Q;(to) provided.

We omit the details of the description of tlie vari-
ational procedure, and refer the reader to the work of
Ref. [6]. It suffices to say that the Lagrange multi-
pliersintroduced by the variational method introduces
are specified in a special way, in order: (1) to fix an
initial condition from which proceeds the irreversible
evolution of the macroscopic state of the nonequilib-
rium many-body system, what introducesfrorn the out-
set a condition for dissipativity in an ad hoc manner;
(i) to introduce a set of functions F;(t) such that they
have tlie role of intensive variables thermodynamically
conjugated to theintensive variables @;(t), to generate
complete connection with phenomenological nonequi-
libriuin thermodynaniics; and (iii) to separate the NSO
into two parts

p(t) =)+ (1), (5)

where the first term, p(¢), is an auxiliary generalized
Gibbsian distribution which defines the instantaneous
values of the macrovariables, and p’(¢) carries the in-
formation on tlie microscopic dynamics relevant to the
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description of the irreversible evolution of tlie macro-
scopic state of the system. The auxiliary distribution
isgiven by

PO = exp{-¢(t) - 3 F(OF}, ()

where

¢(t)=In Tr {exp (—ilpj(t)Pj) } , (7

ensures its normaliudation.
Conditiori (i) above, placed on the variational La-
grange multipliers, requires tlie additional property

Q;(t) = Tr{Pip(t)} = Tr{P;p()} (8)
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which also provides for the simultaneous normalization
of both p(t) and p(t), (namely Eq. (7) in the last case),
and makes of ¢(¢) a generating functional in the sense
that

86(t) _ .
) —Q; 1), (9)

defines tlie conjugation of botli kind of variables (F
and Q) in the context of phenomenological irreversible
thermodynamics(®16],

Particular cases of the NSOM given in the litera-
ture are recovered within the variational method [Cf.
Ref. 6], in particular Zubarev's NSO, which is to be
used in our analysis of the system of nonequilibrium
oscillators in next section. It is given by

i
Pe(t) = exp {6/ dt/es(t’_t) lnp_(t/, ¥ _ t)} ’ (10)

2]

where p is given by Eq. (6) witli the first time in the
argument refering to the time dependence of tlie tlier-
modynamic variables F;(t') and the second stands for
the time evolution of operators P;(t' — t) in Heisen-
berg’s representation. ¢ is a positive infinitesimal that

ensures the irreversible evolution of the system from
initial preparation, and goes to zero after the trace op-
eration in the calculation of average values has been
performed. Integration by partsin Eg. (10) allows to
rewrite Zubarev's NSO in the form

t
pe(t) = exp {lnﬁ(t,())—/ dt’e‘("‘f)a%lnp(t’,t'—t)} : (11)

which can be put in the form of Eq. (5) [6,9]. It iswortli noticing that Zubarev's NSO satisfies a modified Liouville

equation of the type

[Z% + iﬁJ Inpe(t) = —efln p(t) — In 22, 0] , -

i.e. a Liouville equation (L is tlie Liouvillian of tlie
system) witli an infinitesimal source that breaks the,

otherwise valid, time reversal symmetry. We note that
theinitial condition for the NSO is

pe(—~o0) = p(~00,0) , (13)

i.e. the state characterized by the initial values
Q;(—o0) of tlie macrovariables with no correlation
among them; for t > ¢,(= —o0) tlie term p’(¢) is present
and with it the irreversible evolution and correlation of
the variables under the dynamics generated by the sys-
tem Hamiltonian.



276 Brazilian Journal of Physics, vol. 25, no. 4, December, 1995

The NSOM seems to be a powerful mechano-
statistical formalismfor the treatment of systems arbi-
trarily away from equilibrium. In particular it provides
mechano-statistical foundations for phenomenologlcal
irreversible thermodynamics!®l.  Also, within its
scopel®!, Glansdorff-Prigogine thermodynamic criterion
of evolution, Prigogine's theorem of minimum entropy
production, and Glansdorff-Prigogine (in)stability cri-
terion are verified?. Further, within the framework of
the NSOM it is possible to construct a response func-
tion theory for far-from-equilibrium systems and an

accompanying nonequilibrium thermodynamic Green
function formalism{¢l. But the most important part in
the NSOM is the construction of a nonlinear quantum
transport theory for the basic variables, fundamental
in all applicationssince they give the description of the
irreversible evolution of the macroscopic state of the
system. We have

Soo=rr{Zmaeg, a9

and using the separation of Eq. (5) after some mathe-
matical manipulations we are left with the equation{!”]

d 1 co
ZQit) = IO + I+ 10 (15)
where )
JO() = Tr {?ﬁ[P’" Ho)p(t, 0)} , (18a)
JW@) = Tr{z,—lﬁ[Pj,H’]ﬁ(t,O)} , (160)
and 1 ' 1
J!gcon) _ (Zﬁ) /—oo dt’ €' =1) [T'r {ﬁ{[H’ [H'(t —t'), P;(t — tl).]]ﬁ(tl’ 0)}
| dE(V) STR{[H(t - 1), Py(t - t)p(t', 0))} (160)
dt! 0I7%(U)

Eg. (15) is a far-reaching generalization of Mori’s
equations!!3l. The first two terms, .7 and J(1) are, in
Mori’s terminology, precession terms, and the collision
operator of Eq. (16¢) is, differently to Mori’s theory, a
highly nonlinear term in the basic variables; also it is
nonlocal in space (for simplicity we have omitted the
possible space dependence of quantities P),and it con-
tains memory effects.

The collision operator of Eq. (16¢) is extremely dif-
ficult to handle in practical calculations. In Ref. [8] we
show that, using the properties defined by Egs. (1) and
(2), the complicated collision operator of Eq. (16¢c) can
be rewritten through the use of an appropriate operator
for the propagation of the past history of the motion -
in termsof an infinite series of collision integrals which
are instantaneous in time (given as averages over the
auxiliary NSO of Eg. (6) at the time of measurement)

and organized in increasing powers n of the interaction
strengths, namely

oo
Lo =Y 10, (17)
n=0
with the construction of quantities J}") described in
Ref. 8].

Theform of the collision operator given by Eq. (17)
permits to introduce approximations by means of a
truncation of the series of partial collision operators in
a given order of the interaction. The lowest order that
introduces relaxation effects is a truncation in second
order in the interaction strengths: it renders the equa-
tions Markovian in character and we have called it
the second order approximation in relaxation theory,
SOART for short. It is usually referred to in the liter-
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ature as the linear theory of relaxation!!], a name we
avoid because of the misleading term linear that indi-
cates a certain approximationin operator g in Eq. (5)
and in the expression for the information-entropy pro-
duction in the NSOM. In SOART the equations of evo-
lution are aset of coupled and, in principle, highly non-
linear integrodifferential equations [J(® and and .7(!)
are given by Egs. (16), while () is in Ref. [8] given
by Eq. (62a)].

As remarked in the Introduction, for the treatment
of the problem of studying nonlinear dissipative har-
monic oscillators, we resort to the fourth order approx-
imation FOART, which introduces, besides J(®, J(1),
and J®, the partial collision operators .7 and J*),
given by Egs. (62b), (62¢) and (66) in Ref. [8].

We call the attention to the fact that the differ-
ent /(™) with n > 2, are composed of several types
of terms that can be summarized as being associated
to three kind of contributions, namely: (a) the equiv-
alent of the rionequilibrium statistically averaged con-
tribution of the Born series in perturbation theory; (b)
termsthat carry the effect of the change in the nonequi-
librium macrostate of the system during theirreversible
evolution; and (c) terms that involve the effect of the
past history of evolution (memory effects).

The partial collison operators J(*) are more and
more intrincate with increasing n, producing a large
number of contributions of the three types just men-
tioned. We anticipate that in the calculation up to
n = 4 for the equations of evolution of the populations
of the vibrational modes in the system being consid-
ered, because of the characteristics of the Hamiltonian
and of the basic macrovariables, only contributions of
the type (a) are present.

III. Equations of evolution for the vibrational
modes

We consider a periodic array of harmonic oscilla-
tors which have associated vibrational modes, consist-
ing of a high frequency branch with frequency disper-
sion relation wg, and a low frequency branch (acoustic-
like branch) with frequency dispersion relation §2;. The
wave-vector ¢ runs over a reciprocal space (Brillouin)
zone. Further, an external source continuously pumps
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energy on the upper branch of oscillators, while the
acoustic-like branch is taken as a thermal bath con-
stantly kept at temperature T through a good thermal
contact with a reservair.

We write for the system Hamiltonian

H=Hy+H , (18)

according to the requirement of the NSOM [Cf. Eq.
(1)], where

1 1
Ho= Y g (alap + 3) + om0 (s + 5) 09

q

and
H' = H}+ H{ + H}, (20)
with
Hy=> psab+HC., (21)
; 7
Hi =Y Vgpagbhbl -+ H.C., (22)
7
Hé :E%fa;bq-rb}+q,+H.C. ) (23)
b

In these equations a(a') and b(b1) are the annihilation
(creation) operators of the vibrational modes and of
the vibrational modes of the thermal bath, respectively.
The two terms in Hy are the Hamiltonians of the free
subsystems. H } accounts for the interaction between
the pumping source and the vibrational modes, with ¢
and ¢* being annihilation and creation operators for
the excitations in the source, also incorporating the
coupling strength. The other two terms, H{ and Hj
are the contributions of the anharmonic interactions
between both types of vibrations that will contribute
to the equations of evolution: they correspond to the
decay of one vibrational mode into two of the thermal
bath, and of one vibrational mode and one of the ther-
mal bath into one of the latter (and their Hermitian
conjugates). Momentum conservation has been taken
into account.

To dea with thissystem in NSOM thefirst step, as
noted in Section IT is to define the basic set of variables
deemed appropriate for the description of its macro-
scopic state. We choose the population of the vibra-
tional modes,
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v(t) = Tr{al agp.(t)} ,

and the Itinetic energy of tlie thermal bath,

(24)

Ep(t) = {Zm (b by = )pe(t} . (25)

where p.(t) is Zubarev's NSO for this case, witli the
auxiliary NSOM-operator [Cf. EqQ. (6)] given by

p(t,0) = exp {—¢(t) - Z F;(t)aff ag— ,BHB} ,
7

(26)
where f = 1/kT, with T being the constant tempera-
ture of the thermal bath, aiid Fg{t) is tlie nonequilib-
rinm thermodynamic parameter conjugatecl to the dy-
namical variable population of tlie vibrational inodes;
Hp 1s tlie Hamiltonian of the free thermal batli; and
#(t) [Cf. Eq. (T)] istlie Massieu-Planck functional en-
suring the normalization of the NSO. It should be noted
tliat tiesymmetry condition of Eq. (2) issatisfiecl, with
all o being null.

We are left witli the task of evaluating the equa-
tion of evolution for the population of the vibrational
inodes, what we do resorting to tlie NSOM-FOART,
tliat is to say an equation of evolution containing tlie

|

d
Zvat) = Iglwy) - -

ZA“'{V ([ + v(t)] = vp (D[ + vp(t))ePrPer )}

where

(I

playstlie role of the reciprocal of a relaxation time, and

Ajr = A%

with

AL =

B
it = Z|Vq|”*ﬁq*— ;

partial collision integrals of Eq. (17) up to the fourth
order only, namely

S R O U O ROk ARSI

(27)
with the collision integrals .7(® and .7() given by Egs.
(16a) and (16b), and tlie others, as noted in last sec-
tion, given in Ref. [8] by Eqgs. (62a), (62b), (62¢) and
(66), where, of course, quantity P; is here alaz. We re-
call that tlie other basic variable, namely, the energy of
tlie tliermal bath of Eq. (25) is assumed to be constant
in time and determined by the temperature T, that of
equilibrium with the reservoir.

d
(1)

The calculation of Egq. (27) is lengthy and
laborious(2%); without going into the details we note that
because of the particular'forms of the Hamiltonian, the
auxiliary NSO, and tlie basic variables, several contri-
butions vanish, iiamely /¢, /) and J&. Moreover,
of the multiple possible contributions to .7t and J®*,
involving the three types (a), (b), and (c) described at
tlie end of Section 1I, they simply reduce to those o
type (a), namely, tlie equivalent of tlie nonequilibrium
statistical average of the second and fourth order con-
tributions to the Born series in quantum perturbation
theory. Wefinally obtain,

L lglt) - ]+

_ 47r 1
= Z'V:zplz” V 705+ —“’q')

471' 1
Z‘qu)l "p Vq'+p

(28)
MU E(Qpyp + Qp — wy) (29)
(2)
+Aq (30)
BRS 7
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19— + Q5 —~ wi|* + | Qppq — U —~wp I + 19 — vy —wp—p|* +

Q5 + wz —wprgl® + Q- +wi — w18 Qpsg- ~ U — Agr) (31)
Mg = Z Vg Vi Pvg vhs g e o0
(1Q5—g +W5 —wipg-g [+ |+ wpg —wp | +
Qg +wp— wpP16( Q- + U+ Agp) (32)

It should be noticed that the terms that appear in
the expression for 7= [Eq. (29)] are contributionsfrom
J®, while those with coefficigiits A come from J(4),
Furthermore,

Ajp = wg —wyr (33)
vf = [exp(BRQy) — 17, (34a)

is the population in equilibrium o the thermal bath
modes,

V3 = [exp(Bhwg) — 171, (340)
is the population in equilibrium of the pumped modes,
and we have expressed the time-dependeiit correla-
tions involving the operators associated to the external
source in terms of a spectral density, namely

00
-2—]: < g <p-(t) [_Oo %Iq(w)ei‘"t , (35)
wliere I7 is tlie iiitensity of the source at frequency w
in its Fourier spectrum.

The equation of evolution, Eq. (28), for the pop-
ulation of the g-mode, is composed of several contri-
butions: the first is the one associated to the pumping
effects (from the external source) that brings the system
further and further away from equilibrium with increas-
ing values of | (the intensity of tlie source); the second
contribution accounts for tlie relaxation of the excess
population, created by the source, to the thermal bath
diminishing tlie value of the population; the one con-
taining A (and arising from J{*)) contains a nonlinear
contribution, expressed by the product vzv,+, which
can produce either a relaxation or an excitation effect
depending on the sign of the differencews —w, . For a
given mode § this term tends to increase its population
at the expense of the other modes ¢ if it is verified

l

that we+ > wz. This clearly implies that the energy
pumped by the external source on the different modes
would tend to be transferred to the modes with the
lowest frequency in a cascading-like process.

With an external source acting continuously, after a
transient time has elapsed a steady state must follow,
i.e. dv/dt = 0. It should be stressed that the steady
statein the absence of the source [1= 0in Eq. (28)] is
the equilibrium state, as can be verified using Eq. (28).
Let us next look for the characteristics of this steady
state. First, it is worth noticing that according to the
NSOM [Cf. Egs. (8)] in tlie present case it followsthat

va(t) = Tr{alagp(t, 00} = [F M — 1)1 . (36)

In equilibrium Fg0 = fBhwz; and Eq. (36) is the Planck
distribution of the populations. Consider now the sta-
tionary nonequilibrium situation when, after some sim-
ple algebraic steps, we can obtain from Eq. (28) in
tlie stationary state that the nonequilibrium intensive
variable Fiy can be written as

Fyg = Blhwg — pgl , (87)
and, hence,
r = lexp{Blhws — pg} — 1], (38)

where the quantity x4 is defined by the expression

exp{B{hwy — pg]} = Ng/Dy , (39)

where
Np=1I;+ I/-'T- '+ 47, (40a)
Dy=1Iz+v ~7'- 1y Yy, (40b)
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= '1+ZA (1 +vpePhlary | (40¢)
and
1= _Amvg (40d)
7

Eqg. (38) is an interesting alternative form of
Eg. (28) in the stationary state: it is formally a
Bose-Elnstein distribution with temperature 41 telnd
a quasi-chemical potential pg for each mode. We call
the attention to the fact that this quasi-chemical po-
tential is a complicated functional of the population of
all the modes. Further, the quasi-chemical potential
per mode vanishes in the limit of vanishing pumping
source, and then Eg. (38) becomesthe Planck distribu-
tion in equilibrium, but with a non vanishing pumping
source py is positive and growing with the increasing
intensity of the source. Thus, the most favored mode
- the one with the lowest frequency - may be lead to a
situation when, for a sufficiently high intensity of the
source, its quasi-chemical potential may approach its
frequency and a Bose-like condensation would follow.
We analize this possibility in next section on the ba-
sis of a simplified model. As a final word in this sec-
tion we note that the concept of Bose-Einstein distri-
butions with non-zero quasi-chemical potential in the
nonequllibrium populations of bosons, that are oth-
erwise Planckian in equilibrium, have been used by
Landsberg for the populations of photons in the case
of the steady state between radiation and an electron-
hole plasma in semiconductorst?!], and by Frohlich for
the characterization of the populatl ons of dipolar wave
excitations in biophysical systems!!2.

IV. Numerical solutionsfor a model system

The equations of evolution for the different modes
are aset o nonlinear integro-differential equations that
couple all the modes. To perform numerical solutions
we resort to a simplified model: Noticing the already
referred effect that the modes at the lowest frequency

|

AL = 4m ¥ 8 Qh43 4
B fos

0Q V TOTQ‘

receive the energy pumped on ali the other higher fre-
guency modes through the term

Agp (1 — PPPat)ppn, (41)

in a cascading-down process, we introduce a crude
model consisting in concentrating the effect of the
pumping modes in only one (say g = 0 at the high-
est frequency), associated with a degeneracy factor, go,
accounting in average for all the others, and the modes
with thelowest frequency, (at the boundary zone) which
we characterized by wave-vector g, and a degeneracy

9Q-
We verify the following properties:

AQ"(T = Aq.q,,eﬁﬁAqq’ y (42&)

and for § being a boundary zone vector there follows
tlie "nesting™ condition

Qs =9 -, (420)
and we introduce next a Debye model, namely we take
Q7 = s|p], where s is the group velocity of propagation.
Finally we take the matrix elements V3 as depending
only on the momentum transfer, and we write V(q) for
them. After performing the integration in ' in the ex-
pression for 7 of Eq. (29) wefind an expression for the
matrix element in term of the relaxation time, thelatter
to be taken as a phenomenological parameter, namely

[V(Q)I® = 27h?s®v28 Vg, (43)

where V is the volume of the system. In the proposed
model introducing Eq. (43) in the expression for the
guantity A of Eg. (31) and, after that, performing the
integrations in " we find five vanishing contributions,
namely those associated with A®) given by

AY = ZA“’ (44)

In Eq. (44) we have introduced the quantities,

Q5 — Bog

¢ % (44a)
Qg ~wg
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where
fOQ = I/és)yéé)eﬁh(ﬂQ_AoQ)/Q ,
with
v = exp L pnias 2 a o o1]
03 = P 9 ( o) OQ) - ] ,
moreover,
22 = (05 —ws]?/|w B M A0 (44b)
0§ Q™" 0 Q5 — Dy oG’
Q : ’
A - (tamwg |l ;)A@ A (44c)
] s— A < 3 0g ’
“3 0Q Poé
where
(3) _ 1
FOQ =wpy — (AOQ/252Q2)(QQ + AOQ)z _ 5(‘0@ —wg — wQ.,) , (44d)
also,
2
ws—Ays] | Qs —ws
A = |2 0@ ¢ @ |\ (44e)
0Q I‘gg QQ‘ - AO@ 0Q
where
(4) _ 1
Tog = w0 = (Rog/25°Q%) (g = Bog)” - 5lwg Tws T ug) (441)
and finally
2 2
OB G- St N R ] BYON (449)
0 Q5= Ag| Qg Dog| @
The two coupled equations of evolution are then
d 1
FY = Iy — ;a(yo — ) - 9505 (45a)
d 1 0
ave=1ls- FQ"(”@ — @)+ 9oRog (456)
where
Ryg = Bogive(l +vg)e” o — (1 4+ wo)vs} . (46)

It is worth noticing that Egs. (45) are of the type
of Lotka-Volteras predator-prey equations??. The de-
generacy coefficients g are proportional to the extension
of the system; we take for them the expressions

— V 3 3
go = Oto——-(27r)3 ZWQ s (47(1)
vV 3
go = aQ——( P ZvrQ3 X (470)

where og and ag (with both smaller than one, and
ao + ag < 1) stand then for the fraction of the num-

|
ber of the two types of modes that in our model are
contained in the Brillouin zone.

Toobtain acomputational solution we need tointro-
duce numerical valuesfor the different parameters. For
illustrative purposes only, we choose those correspond-
ing to the polar semiconductor GaAs, namely, Q =
5.6X 107 em™1; s =5X 10° cm sec™1; Q5 = 4.3X 1013
sec™!; wp = 5.4 x 1013 sec™1; wg = 4.5x 1013 gec1;
T0 = 7o ~ 10! sec; further we take T = 300K. There
are two open parameters in the calculations, namely,
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ag and ag. We solve the equations for different values
of them, i.e. we test the dependence of the behavior of
the system on them.

Using the values stated above for the different pa-
rameters we find that the two coupled equations (45)
in the stationary state can be transformed in the two
following equations, namely

”52 + [F(a0, ag) — (a0/aq)mqlo]vg-

—[G(ao, @) + 4.9(ao/eg)Tlo]) =0, (48a)

7o =00 + molo — (rorg/mo0)(Pg — 73) (48b)

where

Fev, CYQ) =44+ 12001221 -+ 3.6(0’0/OJQ) ,

G, Q) = 2.3+ 55.804(31 + L6(ao/q) ,

and the bar in # indicates the stationary value of the
population.

We have taken a variable pumping intensity Io, but
for the purpose in what followsof a better characteriza-
tion of the phenomenon we put Ig = 0, i.e. the lowest
frequency modes are not excited by the external source.

Fig. 1 shows the dependence of the steady-state
populations of both types of modes with the pumping
intensity, for the choice ag = 0.2, ag = 10—*, while in
Fig. 2 we display the case ag = 0.6 and ag = 104

108

103

10?

POPULATION OF MODES, v, and VQ

o Ml 1y

0.1 05 1.0
INTENSITY, I, (x10® sec™)

Figure 1. The populations o tlie pumped modes, vp, and
o tlie lowest frequency modes, vg, as a function of tlie in-
tensity of the source. Parameters o (see text) are indicated
in tlie upper left corner.

Frohlich effect is clearly evidenced: after a suf-
ficiently intense pumping intensity is reached, which
we call I¢, tliere follows a very steep (near “explo-
stve” ) increase of the population of the lowest frequency
modes, while it is observed a saturation of tlie “pump-
ing" modes.

Closing this section we look for some asymptotic
forms, meaning Z; >> I, for the equations in the sta-
tionary state, that would help to clarify some of the
numerical results. After the critical point has been sur-
passed, Vs is very large; then v ismuch larger than z/°8
and 1, and this is also valid for vg. Hence, using Egs.
(45) we obtain a couple of equationsfor the stationary
asymptotic populations 74, namely

Io — 757 — gohogZmons =0, (49a)

and

—1554 + gOAOQZﬁg‘D
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POPULATION OF MODES, v and vg
Q
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Figure 2. Idem asin figure 1 for two other vduesd param-
eters e.

where
Z = ¢PhBoq 1 (50)

From Eq. (49b) we find the asymptotic saturation
value of vg, namely

17(‘;1 =1/g0AogZT1q , (51)
and replacing this value in Eq. (49a) we find that
asymptotically

74 = (ao/eq)rqllo ~ I], (52)

where we have introduced the quantity
IE; = [goAOszTQ]‘l . (53)

Eg. (51) clearly tells us that the saturated value
of vg is smaller when larger the number of externally
pumped modes (gq), when larger the relaxation time of
the low frequency modes (75), and when larger the bi-
linear coupling coefficient (A.q), as should be expected.
On the other hand, Eq. (52), tells us that the popu-
lation of the "exploding” mode grows linearly with the
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power of the external source pumping the higher fre-
guency modes, with a proportionality factor depending
on theratio of the number of externally pumped modes
to the number of the lowest frequency modes, hence a
very large number. Further, the term in the square
bracket indicates that the critical pumping intensity
needs be much larger than the values I of Eq. (53},
evidently larger and larger when smaller and smaller is
ap Which, we recall, is a measurement of the fraction
of modes in the Brillouin zone pumped by the external
source.

Let us now look for the asymptotic value of the
quasi-chemical potential pg. One has

pg = hwg - A n (7}5) ~ fwg — (Brg)™", (54)

and using Eq. (52) we obtain that

po = hwg — kT[(aq/a0)ro(lo = I5))™ . (55)
Thislast equation demon'strates, as the curve of Fig.
3 shows, that the quasi-chemical potential of the low-
est frequency mode tends asymptotically to the energy
of the mode as I, tends to infinity, but, otherwise, re-
mains slightly below that value for I; larger than the
critical value. Such difference is, for I, > I, roughly
kTagq/agrgly, that goes to zero with increasing Ip.

T T T
I -

- ape02
ag=10™*

o

1

QUASI-CHEMI CAL POTENTIAL(UQ/(.JQ)

O 0 0 O 0o o o o o

- N W d e N oo ©
|

| | i 1
10° 10% 10° 10
INTENSITY ,Iy(sec™

ol

o
n

Figure 3. The dependence On the intensity d the source d
the quasi-chemicd potential o the lowest frequency modes.

Consequently, such very small value impliesin the
resulting complex behavior consisting in the occurrence
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of a near Bose-Einstein-like condensation in a nonequi-
librium dissipative macrostate of the system of vibra-
tional modes, wliose dynamicsis governed by appropri-
ate nonlinear laws.

V. Summary and concluding remarks

We have analized the nonequilibrium macroscopic
state of a system of excited (by the action of an ex-
ternal energy pumping source) vibrational modes, that
are in contact (through an anharmonic interaction)
with a thermal bath of lower-lying in frequency vibra-
tional acoustic-like modes. For that purpose we re-
sorted to the use of the nonlinear quantum transport
theory derived from the nonequilibrium statistical op-
erator method®®l. High order relaxation effects - up to
fourtli order in the interaction strengths - were intro-
duced, what produced the nonlinear contributions that
are shown to be relevant for the emergence of complex
behavior in the system.

We have explicitly obtained tlie equations of evolu-
tions for the populations of tlie vibrational modes, be-
ing able to show that a particular bilinear term can pro-
duce a remarkable effect of transferring, in a cascade-
like process, the energy the different modes are receiv-
ing to the mode with the lowest frequency. In aformal
writing a Bose-Einstein-lilte distribution is introduced
for the population of the vibrational modes, charac-
terized by the temperature of the bath and a quasi-
chemical potential for each mode. The latter is zero
at equilibrium (absence of the external source), as it
should to produce the well known Planck distribution,
but becomes non-vanishing and increasing with increas-
ing source power. Hence, the onefor the mode of lowest
frequency may approach, and eventually coincide, with
this frequency, leading to an "explosion™ in population
of such mode.

A numerical solutionfor amodel system isdescribed
in Section IV. In fact we were able to show that, there
exists a critical value of the pumping power beyond
which an enormous increase in the population of the
lowest frequency modesis produced, at the expenses of
all the other modes. As shown, the quasi-chemica po-
tentials of the lowest frequency modes tend only asymp-
totically (source intensity going to infinity) to coincide
with the value of the modes frequencies. However,
the populations of the lowest frequency modes increase

enormously, while those of the all other modes achieve
almost saturation. Hence, there follows a kind of Bose-
Einstein condensation in tlie sense that thedistribution
in the modes corresponds to a large accumulation in
tlie lowest energy state. But it should be emphasized
that this occurs in a dissipative structure (nonequilib-
rium conditions) after a critical pumping intensity is
achieved.

The dependence of the phenomenon on the proper-
ties of the system and its main characteristics has been
discussed in Section 1V. Here we only emphasize that
this unexpected complex behavior arises as a result of
the nonlinear characteristics of the kinetic equationsin
tlie nonequilibrium dissipative state of the system. As
indicated in the Introduction we call the phenomenon
Frihlich effect after Frohlich suggestions?, of which
oursisadetailed calculation invoking high order relax-
ation effects.

Concerning real systems where the situation here
described may be present, we can mention two cases.
One is that of polar semiconductors where there are
higli frequency optical modes and low-frequency acous-
tic modes. We have considered the case when the opti-
cal modes are excited through the indirect photon car-
rier absorption process in doped materials!?3l. It is pos-
sible to show that the Frohlich effect is present, but at
such too high levels of laser power that would produce
extensive damage in the sample, and so is not experi-
mentally accessiblel?®!, The reason is the very low ef-
ficiency of tlie pumping procedure. Additional studies,
introducing excitation by meansof high intensity elec-
tric fields, are under way. Another case is that of dipo-
lar vibrations in biopolymers and other biological ma-
terial ~excited by metabolic processes, and in contact
with a therrnal bath[l1:12]: Exact model calculations?4
seem 10 show that thisisa quite appropriate candidate
for the actual occurrence of Frohlich effect.

Finally, we anticipate that preliminary results!?%]
seem to show that the behavior of the system is even
more complex, in the sense that beyond the critical
intensity for the emergence of Frohlich effect, excita~
tionsin the system at the lowest frequency propagates
in a coherent fashion, with almost no dissipation, and
being of the solitary wave type. It is worth men-
tioning that the characteristics of the curve of popu-
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lation vs. intensity of the pumping source (e.g. fig-
ures 1 and 2 in this paper), taking together with the
single-frequency ("monochromaticism~"),and dissipa-
tionless propagation of the excitations!?%], describes a
phenomenon similar to that of laser action.
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