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It is shown that Einstein's gravitational theory with an arbitrary RØ coupling agrees with 
Newton's law of universal gravitation. It is also shown that under suitable conditions the 
same is true for higher order derivative gravity plus a scalar field arbitrarily coupled to the 
curvature scalar. 

Few theories can compare in the accuracy of tlieir 

predictions with Newton's theory of universal gravita- 

tion. The discovery of Neptune, and the rediscovery of 

Ceres, are among the spectacular sucesses that test,ify 

to the accuracy of the theory. Unfortunately Newton's 

theory is not perfect: the predicted motions of the per- 

ihelia for the inner planets deviate somewhat from the 

observed values. Although Newton's theory is not per- 

fect, it is an excellent approximation in the limiting case 

of motion at low velocity in a weak gravitational field. 

As a consequence, any relativistic theory of gravitation 

ought to agree with Newton's theory in this limiting 

case. 

On the other hand, the reasons for adding to Ein- 

stein's action for gravitation a nonminimal functional 

of a scalar field are manifold[']. It is widely believed, 

moreover, that this nonminimal functional may be writ- 

ten in the following f ~ r m [ ~ ]  

where X is a dimensionless parameter, and V(4) is tlie 

interaction potential, i.e. a polynomial ouer the field q5 

(higher than second degree). Here the Ricci tensor is 

defined by R,, = -dar:,, + ...; and the metric con- 

vention is g,, = diag(1, -1, -1, -1). Accordingly, let 

us focus our attention on the gravitational theories de- 

scribed by the action functional 

where 

R 
( 2 4  

with A = 87rG in natural units. On physical grounds, 

two fundamental questions may be raised as far as the 

preceding theories are concerned: Are those gravita- 

tional nonminimally coupled theories compatible with 

the wealc equivalence principle? If this is so, do they 

agree with Newton's gravity in the limiting case of mo- 

tion at low velocity in a wealc gravitational field? 

The first question was recently answered by Accioly 

et al.L3] They found that gravitational nonminimally 

coupled theories, in general, do not violate the weak 

equivalence principle. In the following we shall show 

that the answer to the second question is affirmative as 

well. 
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are given respectively by as the above vertex is concerned. 

Z 
D(k)  = - 

lc Introducing the Mandelstam variable t = lc2, the 
V(p,pl) = -2iB [ p p 1 + 2 m 2 + 3 1 ( p + p 1 ) 2 ]  invariant amplitude for the process depicted in Fig.1 

where a11 momenta are supposed to be incoming as far becomes 

The gravitational potential is given by 

where F ( N R )  is the nonrelativistic limit of iM. It can be obtained from Eq. (7), and the potential may be 

expressed as 

Therefore the agreement with the Newtonian the- 

ory is verified if B2 E 47rG, which directly implies 

that Einstein's constant in conformally flat spaces is 

given by A = -247~G. It follows then that Einstein- 

nonminimally coupled scalar field theory is compatible 

with Newton's law of universal gravitation. The second 

and third terms in Eq. (9) are semi-classical corrections 

to  the Newton force. 

It can be shown using much algebra that the pre- 

ceding result remains valid for arbitrary Riemannian 

spaces. 

It is regrettable, however, that Einstein's theory 

gives no room for any quantum theory which is free of 

contradictions. Yet, over the last twenty years higher- 

derivative gravity has been considered as the first and 

best candidate for the quantum description, although 

it is not unitary within the usual pertubation scheme. 

Incidentally, it is believed that the problem of non- 

unitarity can be overcome by using a non-perturbative 

approach[5]. Consequently, it would be interesting to  

investigate whether or not - gravity plus a scalar 

field arbitrarily coupled to the curvature scalar agrees 

with Newton's theory in the limiting case previously 

mentioned. The action for higher-derivative gravity is 

generally written in the form 

where both a and ,B are dimensionless parameters. In 

the weak field approximation this action assumes the 

form 

from which the "graviton propagator" is easily obtained 

as 

This result agrees with the one found by Brunini and 

 ornes[^]. The above propagator has a good 
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ultraviolet behaviour a t  the expense of a negative met- Repeating the rasoning that led previously to Eq. 

ric massive ghost. Of course to avoid the ghost becomes (7) we now find that 

tachyonic one must impose (3a + ,f3) > 0. 

The gravitational potential is then given by 

where 

So Eq.(15) may be approximate to approach the 

newtonian limit l/r as closely as we wish, by ensur- 

ing that M is large enough; of course we are assuming 

that the parameter M is positive (absence of tachyonic 

ghosts). It can be shown that this result remains valid 

for arbitrary Riemannian spaces. 
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We study the Gonner identity for the Riemann's 4-spaces of class one, and emphasize to 
the singular case baeGae = O, where G,, is the Einstein's tensor and bae is the second - 
fundamental form of R4 with respect to E5 
Rq embedded in E5. 

We obtain bij for the special case (p = O) in 

I. Introduction 

A space-time accepts embedding into Es if and only 

if there exists the second fundamental form tensoi bac = 

bea satisfying the Gauss-Codazzi equations: 

where E = f 1, Rabed is the R4 curvature tensor and k 

stands for the covariant derivative. From Eq. ( l .a)  we 

can prove[1~2] that 

K2 1 pb.. - -g.. - -R. 
V - 48 23 2 tmnjGmn 1 ( 2 . 4  

where K2 is the Lanczos invariand3l4I is 

tlie double dual of the Riemann's tensor defined by 

*Ribed = $rlabqr~~~~jr l i jcd):  

Also 
E ac p ~ - b  G,,, 
3 (2.4 

and Gae = R,, - gact is the Einstein's tensor. The 

importante of Eq. (2.a) relies on the fact that it allows 

us to  find bij when p # O .  It is routine to verify that the 

*To whom correspondente should be addresed 

quantities bij satisfies Eqs. (l .a) and (1.b). However, if 

p = O the problem remains open. 

In the section I1 we will indicate two cases with 

p = 0: empty space-time and R4 of Einstein-Maxwell 

of class one. In section I11 we will determine bij when 

p = O for the special case with det(GaC) # O and bf # O. 

Notation and terminology are as in ref [5]. 

11. Space-times with p = O 

We will indicate at least two situations where Eq. 

(2.c) reduces to zero. 

From Eq. (2.c) it is clear that Gab = O impliesp = 0. 

It is well known that the empty 4-space is ruled out, 

because the impossibility of its ernbedding into ~ 5 6 ' ~ ' .  
b) The R4 Einstein-Maxwell 

In this case the gravitation is produced by an 

electromagnetic field, which is given by Fij = -Fji. 

Coblinson proved[" that: 

"only a Rq of type N in the Petrov classification with 

Fij nu11 (its invariant are zero) can be embedded into 

E5 ." 

( 3 4  

This necessary condition avoids, for instance, that 

the Reissner-Nordstrom solution could be of class one. 
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By studying the statement (3.a) and the correspond- 

ing Gauss-Codazzi equation we find that: 

In spite of this, ~ollinson[" i a s  able to get the em- 

bedding. It should be pointed out that in this way 

R4 losses intrinsic rigidity, i.e. p = O does not neces- 

sary avoids embedding, but instead the condition p = O 

might change the intrinsic rigidity of the 4-space. It 

is not known if there are other situations with p = 0. 

This can be seen if we construct metrics such that: 

(see Eq. (2.a)). 

111. Determinat ion  of bij fo r  a special case w i th  

p =  o. 

Here we analyze a specific situation where in prin- 

ciple one gets bac for p = 0. 

In fact, by substituting Eqs. (1.a) in (4) we obtain: 

I(2 -gij = €binbjmGnm . 
24 ( 5 . ~ 1  

By introducing the condition 

we are able to write for the square of the second funda- 

mental form: 
1-2 -1 bicbej = e-G .. . 
24 (5 .~1  

Before going further, notice that Eq. (5.b) doesn't 

hold neither for an Einstein-Maxwell metric (see Eq. 

(3.b)), nor in ~ e r m i ' s [ ~ ]  3-space of R4. 

Eq. (1.a) gives: 

bbij = bicbc
j - ER. .  ZJ I ( 6 4  

where R,, R ~ , , ~  is the Ricci's tensor. Combining Eq. 

(6.a) and Eq. (5.c) gives 

From Eq. (6.c) we can easily determine E when b # 
O. If b # 0,  then Eq. (6.b) gives bij as a function of the 

interna1 space time geometry. Summarizing: 

" A R4 of class one with 

is intrinsically rigid" 

From Eqs. (6.b) and (6.c), we can find bij for the 

special case when R4 is embedded into Es under the 

conditions (7). 

Our research will continue trying to find a space- 

time of class one satisfying (7) 
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