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It is shown that Einstein's gravitational theory with an arbitrary Ré? coupling agrees with
Newton's law of universal gravitation. It is also shown that under suitable conditions the
same s true for higher order derivative gravity plus a scalar field arbitrarily coupled to the

curvature scalar.

Few theories can compare in the accuracy of their
predictions with Newton's theory of universal gravita-
tion. The discovery of Neptune, and the rediscovery of
Ceres, are among the spectacular sucesses that testify
to the accuracy of the theory. Unfortunately Newton's
theory is not perfect: the predicted motions of the per-
iheliafor the inner planets deviate somewhat from the
observed values. Although Newton's theory is not per-
fect, it is an excellent approximationin the limiting case
of motion at low velocity in a weak gravitational field.
As a consequence, any relativistic theory of gravitation
ought to agree with Newton's theory in this limiting
case.

On the other hand, the reasons for adding to Ein-
stein's action for gravitation a nonminimal functional
of a scalar field are manifoldl!l. It is widely believed,
moreover, that this nonminimal functional may be writ-

ten in the following form[?]

5@:/Q%JQ%@W@@@¢-m%?—w@+AmM
(1)

where X is a dimensionless parameter, and V(¢) is the

interaction potential, i.e. a polynomial over the field ¢

(higher than second degree). Here the Ricci tensor is
defined by R, = —9,T%,, T ...; and the metric con-
vention is g, = diag(l,-1,-1,—-1). Accordingly, let
us focus our attention on the gravitational theories de-

scribed by the action functional

Slg, ¢ = Sg + Ss , (2.a)

where

%E/ﬁ#@%, (2.5)

with A = 87 in natural units. On physical grounds,
two fundamental questions may be raised as far as the
preceding theories are concerned: Are those gravita-
tional nonminimally coupled theories compatible with
the wedc equivalence principle? If this is so, do they
agree with Newton's gravity in the limiting case of mo-
tion at low velocity in a wedc gravitational field?
Thefirst question was recently answered by Accioly
et al ] They found that gravitational nonminimally
coupled theories, in general, do not viclate the weak
equivalence principle. In the following we shall show
that the answer to the second question is affirmative as

well.
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, ' / amplitude for the Feynman diagram corresponding to
Fig.1 in the framework of the theories defined by the
action (1), wherein we shall assume that V(¢) = 0 for
the sake of simplicity. Of course the massive external
P : q particles in Fig.1 have zero spin. To avoid the clumsi-

ness involved in the evaluation of invariant amplitudes

Figure 1: Lowest-order graviton exchange force. within the context of linearized gravity we restrict our
semi-classical computations to conformally flat spaces.

As it is well known, a covariant photon exchange be- For these spacetimes the metric can be written as

tween elastically scattered particles leads naturally to

the concept of a force or, equivalently, a static electro-

() = (@)1 (3)
magnetic potential. The same is true for the single- " "
graviton exchange between two massive particles as where Q(z) is a position-dependent function and 7, is
shown in Fig.1 in connection With the static Newtonian the flat space Lorentz metric.
force F = —Gmymy/r?. Let us then find the invariant Combining Eq. (2) with Eq. (3) yields!*]
J
QpOa 1
/d4 [ EBZ 5(92 " 0,68,6 — Ot m? ¢* + 6X67°QOIQ) |, (4)
where B? = ——% and (= 9#70,0,.
In the weak field approximation Q2 can be written as
Q% = exp [2Bf(z)] , (5)

where f(z) is a position-dependent function which for physical reasons we assume to have the following properties

2Bfl « 1
hm flz) =0 Va*

r—+

Jlim Ouf(z) —0 Vat .
Substituting Eq. (5) into Eq. (4) we obtain

+ / d'zB [f(@u¢8“¢—2m2¢2)+3A¢2Df]: (6)

|
where all indices in Eq. (6) are raised(lowered) by function associated with the coupling ¢(p)—¢(p")— f(k)

" (v )-

Hence, the “graviton propagator” and the vertex
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are given respectively by
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as the above vertex is concerned.

2
D(k)=
) Introducing the Mandelstam variable t = k%, the
I —_ 4 / 2 /
Vipp) = -28B [p‘p +2m7+3A(p+p) } invariant amplitude for the process depicted in Fig.1
where all momenta are supposed to be incoming as far becomes
|
2,2 N 2
M=_4i32{m+(m§+m§)<£+w>+t(—1—+3,\\} (7)
i 2 \ 2 J
The gravitational potential is given by
V() = L /d31}' F(NR) e*7 (8)
dmyms (27)3 ’
where F(N R) is the nonrelativistic limit of iM. It can be obtained from Eq. (7), and the potential may be
expressed as
B?mimy  B%(m? + m2) 1\ 5
B2 (3+3))"
—_— . 9
Y 0(7) (9)
l
Therefore the agreement with the Newtonian the- approachl®]. Consequently, it would be interesting to

ory is verified if B2 = 4G, which directly implies
that Einstein's constant in conformally flat spaces is
given by A = —24xG. It follows then that Einstein-
nonminimally coupled scalar field theory is compatible
with Newton's law of universal gravitation. The second
and third termsin Eq. (9) are semi-classical corrections

to the Newton force.

It can be shown using much algebra that the pre-
ceding result remains valid for arbitrary Riemannian

spaces.

It is regrettable, however, that Einstein's theory
gives no room for any quantum theory which is free of
contradictions. Yet, over the Jast twenty years higher-
derivative gravity has been considered as the first and
best candidate for the quantum description, although
it is not unitary within the usual pertubation scheme.
Incidentally, it is believed that the problem of non-

unitarity can be overcome by using a non-perturbative

investigate whether or not R? - gravity plus a scalar
field arbitrarily coupled to the curvature scalar agrees
with Newton's theory in the limiting case previously
mentioned. The action for higher-derivative gravity is

generaly written in the form
R aR? B
- 4 — bt My
where both « and 8 are dimensionless parameters. In
the weak field approximation this action assumes the

form
56:/d4a::1§f O+ 128> 3a+ /00 £, (11)

from which the “graviton propagator" iseasily obtained

as
D(k) =i [1?12 - e _1M2} , (12)
) _ 1
M = B Gat p) (13)

Thisresult agrees with the onefound by Brunini and
Gomesl®!. The above propagator has agood ( ~ (7%7)
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ultraviolet behaviour at the expense of a negative met- Repeating the rasoning that led previoudy to Eq.
ric massiveghost. Of course to avoid the ghost becomes (7) we now find that

tachyonic one must impose (3« T 8) > 0.

1 1 1 2 1
M= —4iB’ [;—t_WJ [tz <§+3A> + (m +m3) <§+3A>t+m§mg} (14)

The gravitational potential is then given by

1 Ke M) 4nG[M(%+3))])
V() = Gmumy [-14 K] CRBEI] (15
where M2 (L 4+30) [m? 4+ m3 4 M2 (5 430)]
K=1+ 2 L2 2
mym;
l
So Eq.(18) may be approximate to approach the Effective Action in Quantum Gravity (IOP Pub-
newtonian limit 1/r as closely as we wish, by ensur- lishing Ltd, Bristol, UK, 1992).
ing that M is large enough; of course we are assuming 3. A. J. Accioly and U. F. Wichoski, Class. Quan-
that the parameter M is positive (absence of tachyonic tum Grav. 7, L139 (1990); A. J. Accioly, U. F.
ghosts). It can be shown that this result remains valid Wichoski and N. Bertarello, Braz. J. Phys. 23,
for arbitrary Riemannian spaces. 392 (1993).
4. To avoid the presence of an abnormal scalar field,
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We study the Gonner identity for the Riemann's 4-spaces of class one, and emphasize to
the singular case b®**G,. = 0, where G, is the Einstein's tensor and bae is the second
fundamental form of R4 with respect to E5 We obtain bij for the specia case (p= Q in

Rq embedded in E5.

l. Introduction

A space-time accepts embedding into E5 if and only
if there exists the second fundamental form tensor b, =
b, satisfying the Gauss-Codazzi equations:

Rijre = e(birbjc — bicbir) (1.a),

and
bijir = bk (1.5)

where € = +1, Rqpcq is the R4 curvature tensor and %
stands for the covariant derivative. From Eq. (I.a) we
can provel™? that

K, 1

Zggij - §Rimanmn , (261)
where K, is the Lanczos invariant® (*Rrebed is
tlie double dual of the Riemann's tensor defined by

pbij =

* TO% — 1 rif .
Riyea = $Mabgr RI™ Mijca):

Ky =" R*adeRabcd . (Qb)

Also
p= %baCGac , (2.c)
and Gue = Rac — gacZ is the Einstein's tensor. The

importance of Eg. (2.a) relies on the fact that it alows
ustofind b;; when p # 0. Itisroutine to verify that the

*To whom correspondence should be addresed

quantities b;; satisfies Egs. (1.a) and (1.b). However, if
p = 0 the problem remains open.
In the section II we will indicate two cases with
p = 0: empty space-time and R4 of Einstein-Maxwell
of class one. In section III we will determine b;; when
p = Ofor thespecial casewith det(Gq.) # Oand 4", # 0.
Notation and terminology are as in ref [5].

I1. Space-times withp=20

We will indicate at least two situations where Eq.
(2.c) reduces to zero.

a) R4 empty

From Eq. (2.c) itisclear that G,3 = 0impliesp = 0.
It is well known that the empty 4-space is ruled out,
because the impossibility of its ernbedding into Egﬁ’ﬂ.

b) The R4 Einstein-Maxwell

In this case the gravitation is produced by an
electromagnetic field, which is given by Fi; = —Fj;.
Collinson provedl®] that:

"only a R4 of type N in the Petrov classification with
F;; null (its invariant are zero) can be embedded into
Es”

(3.0)

This necessary condition avoids, for instance, that
the Reissner-Nordstrom solution could be of class one.



J.L. Lépez-Bonilla et al.

By studying the statement (3.a) and the correspond-
ing Gauss-Codazzi equation we find that:

p=0, b=trace(t’;) =0, det(Ger)=0, (3.0)

In spite of this, Collinson®®! was able to get the em-
bedding. It should be pointed out that in this way
R4 losses intrinsic rigidity, i.e. p = 0 does not neces-
sary avoids embedding, but instead the conditionp =0
might change the intrinsic rigidity of the 4-space. It
is not known if there are other situations with p = 0.
This can be seen if we construct metrics such that:

Kzgij = 24Rimn]‘Gmn . (4)
(see Eq. (2.9)).
III. Determination of &; for a special case with
p=0.

Here we analyze a specific situation where in prin-
ciple one gets b, for p=0.
In fact, by substituting Egs. (1.a) in (4) we obtain:

Ky
247
By introducing the condition

det(Gar) # 0 (5.5)

we are able to write for the square of the second funda-
mental form:
bt = e2G 1 (5.c)
10’y = €50y .c
Before going further, notice that Eq. (5.b) doesn’t
hold neither for an Einstein-Maxwell metric (see Eq.
(3.b)), nor in Fermi’s!® 3-space of Ra.
Eq. (1.a) gives:

bb,’j = bicbcj —eRuy » (6&)
where R,. O R,; isthe Ricci's tensor. Combining Eq.
(6.9) and Eq. (5.c) gives

Ky
bbi; = € (gG G~ Rij> , (6.0)
and thus (b= b") :

=¢ (—IZ%G_;“ - R) >0. (6.c)
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From Eq. (6.c) we can easily determine e when b #
Q If b# 0, then Eq. (6.b) givesb;; asafunction of the
internal space time geometry. Summarizing:

” A R4 of class one with

p=0, det(Ger)#0 and b#0 (7

isintrinsically rigid”

From Egs. (6.b) and (6.c), we can find b;; for the
special case when R4 is embedded into Es under the
conditions (7).

Our research will continue trying to find a space-
time of class one satisfying (7)
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