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We introduce a non usual realization of the supersyrnmetric algebra that enables us to  treat 
two-dirnensional systems in a simple way. We study the Hartmann potential as an example. 

I. Introduction 

Aplications of supersymmetric quantum mechan- 
ics (SQM) have bem extensively explored in onel and 
more213 dimensional systems. Particularly, it has been 
possible to  determile new classes of exactly potentials 
by using the ~ u ~ e r a l ~ e b r a ~ ~ ~ ~ ~ .  

Here, we intend to introduce a simple alternative 
realization of the superalgebra which allows us to  treat 
quantum systems iii two dimensions. This realization 
is applicable to  Harniltonians that can be written in 
two separated equations (sec. 2). We take the Hart- 
mann potentia17 that has been used to study the ben- 
zene molecule, as an example of this realization and we 
find its supersymmetric version (sec. 3). From Hart- 
mann supersymmet4c Hamiltonian we construct new 
potentials whose spectra and eigenfunctions are related 
with the original Hartmann potential (sec. 4). 

11. SQM with N=2 

In SQM (N=2) there are two charge operators, Q 
and Q+ ,  that obey the following anticommutation re- 
lations 

{Q, Q) = {Q', Q + )  = O and {Q, Q+) = H,, (1) 

The usual simple realization of this algebra is given by 
2 x 2 matrices4)% However, we can find other realiza- 
tion; namely, 

Where a- and b- are bosonic and a+ and b+ are their 
hermitian conjugate. Thus, we get 

In terms of the eigenfunctions, we have 
(4) 

i.e., the operators A and Q+ induce transformations 
between the bosonic sector (x) and fernionic sector (2).  
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We also note that Where x: = me2 and xi = mV2. Frorn the two 
equations above, we can define 

[Hss, Q I  = [HSS, Q+l = O (7) 

In equation (4) we can interpret H+ = d;d; as a super- O a-a+ O ) -  e 

symmetric partner of H- = $i$:. These two Harnil- 
tonians have the same spectra, except for the ground 
state, as usual in SQM. 

We observe that to obtain H+ in this way we must 
have a Hamiltonian that can be written in terrns of two (15) 

\ r 

separated equations. 
Now it is clearly convenient to choose the following op- 
erators 

111. Harmann Potential 

The Hartmann potentialg~10 has the form a* = -f- d - IM1+ 1/2 + 

dx1 1 h 
1 (16) 

with ao = li/pe2 (Bohr radius), €0 = -pe2/h2 (ground To understand the role wich the constants play, we 
H-at0m e n e r g ~ )  The parameters 7 and are use and b t b -  as part of the original Hamiltonian 

positive constants whose values usually lie in the range 
1 to 10, in molecular applications. We will write 

H0 

the Schrodinger equation in terms of the "squared" H. = t rH+ = a+a- + bsb- (18) 
parabolic coordinatesg. The eigenvalue (Eo) of H. is obtained from the equa- 

tions (13), (14) and (18) as 

x = <v cos cp, y = (v cos cp, r = 1/2(v2 - t 2 )  (9) 2P ,q0=-- -- " a 2  - 4(lMl+ 1)- fi (19) 
This leads us to separated equations l i d a a 1  ~~ h 

d2xi  M 2  - 2 P E z  2~ For the ground state
g 

(nl = nz = O), we have: 
dE2 € 

1 / 4 ~ 1  + XI - ~ ; ~ I X I  = 0 (10) 
d -  P & l + Q 2  - --- - 

h -- 2h IMJ + 1 
- ~ " 2 x 2  = 0 (11) 

dq2 v2 and we obtain Eo = O. We note that the constants in 
where the original eigenfunction was taken as the components of H. yield a zero-energy ground state. 
$(<,V, 'P) = (&?)-'I2 X I ( ~  ~ 2 ( 7 l ) e ' ~ ~  and M 2  = With the operators (16) and (17), we can define the 
m2 + -y2u2. The parameters a 1  and a 2  obey the re- supersymmetric partner of H+ 
lation (constraint) 

We can rewrite equations (10) and (11) as 

(13) Where, as we have seen in Sec. 2. the eigenfunction of 
H- is 

(14) 
and the eigenvalues are the same as those of H+, except 
for ground state. 
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IV. GeneraIizai ion of the Hartmann potential 

As it has beeri done for one-dimensional  case^^^^^^, 
we can find new potentials from Hartmann potential. 

We define new operators 

where 

d d 
A* = F- + f (xl)  and B* = T- + f(zz) (23) 

dx 1 d22 

and we impose thxt 

Using equation (20), we determine the general form of 
the functions f (xi)  and f (xz) ,  namely, 

+- L / 

ri + l,n ,& -2IMl-l-1 
1x1 exp ( - 4 9 5 2 )  

f- 
i'? + d ~ ~ t Z ' ~ ~ ~ ~  exp { - 4 9 2 2 }  

In order to avoid singularities we choose ri > O and 
r2 > O. Thus we h a ~ e  the commutation relations: 

lMI+1 /2  4% d [A- ,  A+] = 2-- 
3:: 

+ 2- + 2-~(xI)  (27) h dx 1 

A new Hamiltonian is defined by 

and the eigenfunctions of 'H is written in terms of H- 
as 

i.e., 3-1 has the same eigenfunction x = Vf jj = D+d- I X  
and spectrum as H-, except for the ground state, which 
is obtained from 

(31) 
We can define a complete Hamiltonian 

where the constraint (12) still holds here. This Hamil- 
tonian has the same spectrum as H. (18) and we can 
construct its eigenfunctions from the knowledge of each 
component of X .  

V. Conclusions 

We presented a realization of the superalgebra that 
permits to study two-dimensional systems in a simple 
way. The generalization to n-dimensional systems can 
be made in the same way by enlarging the matrices 
d; and d i  in order to include the new equations that 
are written in terms of the new variable. However, we 
note that this approach is only applicable if the origi- 
nal Hamiltonian can be written in terms of separated 
equations, as we have done for the Hartmann potential. 

In our treatment of the Hartmann potential, we 
have the extra constraint (12) that relates the two com- 
ponents of H+ (15). This is not the case when we study 
an uncoupled system, as for example, two independent 
harmonic oscillators in a plane. 

We constructed the supersymmetric version of the  
Hartmann potential, generalized it and found out new 
potentials whose solutions were obtained in terms of the 
solution of the original systems. These new potentials 
have the same spectra of the original potential but dif- 
ferent eigenfunctions. Although they are not associated 
to any know physical system, they can be used to study 
systerns where the form of the eigenfunctions is impor- 
tant. In ref. [ l l ]  we have explained this possibility for 
the generalized one-dimensional harmonic-oscillator. 
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