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We introduce a non usual realization of the supersyrnmetric algebra that enables usto treat
two-dirnensional systemsin asimple way. We study the Hartmann potential as an example.

|. Introduction

Aplications of supersymmetric quantum mechan-
ics (SQM) have becn extensively explored in one' and
more?3 dimensional systems. Particularly, it has been
possible 10 determiae new classes of exactly potentials
by using the superalgebra®56.

Here, we intend to introduce a simple alternative
realization of the superalgebra which alows us to treat
guantum systems in two dimensions. This realization
is applicable to Hamiltonians that can be written in
two separated equations (sec. 2). We take the Hart-
mann potential® that has been used to study the ben-
zene Molecule, as an example of this realization and we
find its supersymmetric version (sec. 3). From Hart-
mann supersymmetric Hamiltonian we construct new
potentials whose spectraand eigenfunctions are related
with the original Hartmann potential (sec. 4).

II. SOM with N=2

In SQM (N=2) there are two charge operators, Q
and @7, that obey the following anticommutation re-
lations

{QQ) ={Q*,Q*}=0 and {Q,Q"}=H, (1)

The usual simple realization of this algebra is given by
2 X 2 matrices¥®. However, we can find other realiza-

tion; namely,
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Where ¢~ and b~ are bosonic and at and bt are their
hermitian conjugate. Thus, we get
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i.e., the operators A and @* induce transformations
between the bosonicsector (x) and fermionic sector ().
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We also note that
[Hu;Q| = [HssaQ+]:0 (7)

In equation (4) we can interpret H+ = d*d, asasuper-

symmetric partner of H- = Pi P These two Hamil-
tonians have the same spectra, except for the ground
state, as usual in SQM.

We observe that to obtain H+ in this way we must
have a Hamiltonian that can be written in terms of two
separated equations.

III. Harmann Potential

The Hartmann potential®!? has the form

2
V(r,8) = yo? (g@— - ) € (8)

r r?sen?d

with ag = k/ue? (Bohr radius), e = —pe? /A% (ground
state H-atom energy). The parameters v and o are

positive constants whose values usually lie in the range
1 to 10, in molecular applications. We will write
the Schrodinger equation in terms of the "squared”
parabolic coordinates?.

r=1/2(" - &%) (9)
Thisleads us to separated eguations

x =€ncosp, y=Encosey,

d?x; M?*-1/4 uE , 2u
& B x1t Y ¢ X1 — —h-ale =0 (10)

wE ., 2p
X2 + 2 x° —";L—azXz—O (11)

d2X2 _ JW2 - 1/4
dn? 7’
where the origina eigenfunction was taken as

¢(£,7w) (Em~V2 xi(n) x2(m)ei™ and M? =
2+ 4262, The parameters a; and «s obey the re-
Iation (constraint)

a1 + ag = 420 %eoay (12)

We can rewrite equations (10) and (11) as

>  M?-1/4 2uz?
T2 T Z / + #21 =
dl’ xl h
2uay

\/l_ﬂ (:!:1) (13)

2 MZ-1/4 2uzxi
{"35%”’ S 52}‘

xa(z2) = — 212 mx:( ) (19)

X1(21)=
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Where 2 = /|E}¢? and 2% = /]EJ»®. From the two

equations above, we can define

-0
_ [ a*a ):
H+_( 0 a-at+t /"~
~ &+ MM L 2t -0 [B(MI+1) 0
0 -G+ M a0 /B (MI+ D)
(15)

Now it is clearly convenient to choose the following op-
erators

togd - M1 VI g
dzy zy h
d Mi+1/2 /2
d;c2 Zoy h

To understand the role wich the constants play, we

use a*a” and b+b~ as part of the original Hamiltonian

Hy

Ho=trHy =ata™ T b*b- (18)
The eigenvalue (E;) of Hy is obtained from the equa-
tions (13}, (14) and (18) as

2u
Eo= -7 ﬁ Taz—4(lMi+1)=v@7L(19)

For the ground state’ (n1 = nz = O), we have:

VIHE]  poarto
h ~ 2 M[T1

and we obtain Ey = 0. We note that the constants in
the components of Hg yield a zero-energy ground state.

With the operators (16) and (17}, we can definethe
supersymmetric partner of H+

_[aat 0 _
H—‘( 0 b“b*)"

2
—ffy + MM VB
0 d? +M +2[M|+3(4+

d:v:2

2 — QIMPﬁ@
(20)

Where, as we have seen in Sec. 2. the eigenfunction of
H_is

X1 a” 0 X1 - x1

r = =d 21
(8)=(% 2)(8)-4() @
and the eigenvalues are the same as those of H+, except
for ground state.
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IV. Generalization of the Hartmann potential

As it has been done for one-dimensional cases*:%¢,
we can find new potentials from Hartmann potential.
We define new operators

D= ( e ) and D* = ( T ) (22)
where
« — o d +__d
=F g T/(@) and BT =Fg~+f(m) (23)
and we impose that

(24)

H_=DD% = ( ATAT 0 )

0 B-B*
Using equation (20), we determine the general form of
the functions f (x1) and f(xz), namely,

f(z1) = - M| +1/2 + \/?ﬁm

Ty h
+ ;c2|Mi+l exp {—4ﬁx2}
Iy [t dzz _2| ex { 43/—2—5-53}
o MLEVR VUL ey @)
R h
M| +1/2 + \/Tﬁxz

f(?z) =0 >
s 12IMI+1 exp {—4@1’%}
r,+ f” dzoZ “2'M'+1 exp {—41;7*‘2573}

= MLIE Vb 09)

In order to avoid singularities we choose I'; > 0 and
I's > 0. Thus we have the commutation relations:

1 1
(5=, 5] = ML L2 VB 0 ) (a8)
iy Lo

A new Hamiltonian is defined by

A+A_ 0
— DD — —
H=D D_< . B+B_)-

- ( o —O[A—’Aﬂ B-B-[?B- Bt] ) =

[~ MR L 20t (M) + 1)L - 255 (1)

0
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and the eigenfunctions of 'H is written in terms of H-
>

DYH_x =Dtenx —» HD x = . Dty (30)

i.e., H hasthe same eigenfunction x =D+ g = D+dl‘x
and spectrum as H-, except for the ground state, which
is obtained from

P¥=0=>
2 exp { -3 LB Y exp {~ [ 9(2)dz)
X =
o exp {3 0B fexp (-~ [} 0@}
(31)
We can define a complete Hamiltonian
H.=tr(H) = AYA~ + BYB~ (32)

where the constraint (12) still holds here. This Hamil-
tonian has the same spectrum as H, (18) and we can
construct its eigenfunctionsfrom the knowledge of each
component of x.

V. Conclusions

We presented a realization of the superalgebra that
permits to study two-dimensional systems in a simple
way. The generalization to n-dimensional systems can
be made in the same way by enlarging the matrices
dl— and d|+ in order to include the new equations that
are written in terms of the new variable. However, we
note that this approach is only applicable if the origi-
nal Hamiltonian can be written in terms of separated
eguations, as we have donefor the Hartmann potential.

In our treatment of the Hartmann potential, we
have the extra constraint (12) that relates the two com-
ponents of H+ (15). Thisis not the case when we study
an uncoupled system, as for example, two independent
harmonic oscillators in a plane.

We constructed the supersymmetric version ofthe
Hartmann potential, generalized it and found out new
potential s whose solutions wereobtained in termsd the
solution of the original systems. These new potentials
have the same spectra of the original potential but dif-
ferent eigenfunctions. Although they are not associated
to any know physical system, they can be used to study
systerns where the form of the eigenfunctions is impor-
tant. In ref. [11) we have explained this possibility for
the generalized one-dimensional harmonic-oscillator.

0 B
(29)

2
i+ MR 2 oM+ 1)V - 2 8(z2)
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