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Abstract  The classical dynamics of Lagrangian systems containing sec- 
ond derivatives of anticommuting variables is considered here. Examples of 
supersymmetric second order Lagrangians are presented. We apply Dirac's 
theory of constrained systems to these models and compare our results with 
those corresponding to first order Lagrangians proposed in the literature. 

1. Introduction 

Pseudodynamics, i.e. the dynamics of a system described by ordinary c- 

variables (even supernumbers) and by a-variables (odd supernumbers) is one of 

the most attractive subjects in the study of gauge supersymmetry and of its out- 

standing properties which have large application in theoretical physicsl-*. The 

main motivation for thc analysis of systems of point particles containing odd vari- 

ables which are invariant under supersymmetry transformations (superparticles, 

for short) is the desire to attain a better understanding of the more complex 

supersymrnetric string models. In fact, systems of superparticles can appear as 

limiting cases of superstrings. An example is the Brink-Schwarz superparticle4 

associated with ground states of the Green-Schwarz superstring
g
. The question 

of the accomplishment of a covariant quantization procedure for superstrings is 

of crucial irnportance and it motivates the investigation of quantum mechanics of 

superparticle m~dels '~- '~ .  

Besides these aspects superparticle systems have their own significance at the 

classical level. As pointed out by Galvão and ~e i te lbo im~,  if we consider a system 
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without spin we can introduce spin degrees of freedom on it, by means of a- 

variables provided that we supersymmetrize the corresponding action. In this way 

we get classical spinning particles. In terms of Dirac's Hamiltonian theory this is 

equivalent to taking the square root of the Hamiltonian generators of the spinless 

system. There is, of course, a close relationship between this result and the claim 

that supergravity is the square root of ordinary general relativity14. 

Another interesting problem concerning constrained Hamiltonian systems is 

that of the inclusion of higher order terms in the action and the possible modifi- 

cations in the algebraic structure of the Poisson brackets of constraints. We can 

mention, for instance, alternative theories of gravitation with Lagrangians which 

are quadratic in the curvature tensor and/or its ~ontractions'~-". The aim of such 

models, as is well known, is the obtention of a consistent quantum theory of the 

gravitational field. Recent works have also shown the relevante of squared terms 

in superstring a c t i ~ n s ' ~ - ~ ~ .  These squared terms contain higher order derivatives 

and lead to a model without ghost particles in the low energy limit of the string 

theory. 

Even the simpler case of point particle Lagrangians - constructed from usual c- 

variables - which depend at most on second derivatives of the dynamical variables 

seems to deserve a deeper investigationZ1. 

The purpose of this paper is to consider the pseudodynamics of second order 

Lagrangian systems, that is, the classical mechanics of supersymmetric Lagrangian 

models containing second derivatives of anticornmuting variables (a-variables). In 

Sec. 2 we recall the general features of second order Lagrangians. We also indi- 

cate the use of some prescriptions of Lagrangian and Hamiltonian formalisms in 

the context of models involving a-variables. Sec. 3 contains examples of super- 

particle second order systems. Comparison is made with some related first order 

Lagrangians encountered in the literature. In Sec. 4 we follow Dirac's method in 

order to derive Poisson and Dirac brackets for the constraints associated with the 

Lagrangians presented in Sec. 3. We also obtain, for each situation, the total an- 

gular momentum algebra and we discuss the interpretation of the spin variables. 

Some of our examples reveal the existence of a second order spin effect besides 
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the cantribution to the spin vector due to the usual first order terms in the anti- 

commuting part of the Lagrangian. Sec. 5 closes that this note with some final 

remarks. 

2. Preliminaries 

Let us consider a pseudoclassical system described by the c-variables zi (i = 

1 ,  ..., n) and by the a-variables O, (a  = 1, ..., N). Let L ( z , ,  k,,?i,O<r,9a, èa) be a 

second order Lagrangian from which we get the action principle 

Recalling that there is an arbitrariness in the definitions of 

respect of to a-variables we make the choice of left derivatives 

(2.1) 

derivatives with 

where 4 is a function depending on a-coordinatesZ2. 

The variation indicated in (2.1) leads to the equations of motion 

The canonical momenta are defined by 
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with yi ki 2nd 7 ,  = e,, and the canonical Hamiltonian is 

where we use Einstein's summation convention. Note that the order of the a- 

variables in (2.9) is compatible with our choice (2.2) for the derivativa. Then we 

can derive Hamilton's equations 

and 

tain, with the aid of (2.10-ll), the time derivative 

df a f  aH a f  aH a f  aH a f  aH - - - + ----- 
d t  aziap' ap iaz i  ayiapt apsayi 

af aH af  aH af aH a f  aH +--+--+--+-- 
ae, ara a r a  ae, a ~ ,  ara  a r ,  a ~ ,  

The right-hand side member in (2.12) corresponds to the Poisson bracket 

{ f ,  H )  so that we have the definition of Poisson brackets between quantities of 

even nature as follows: 

From (2.13) we immediately obtain the brackets between two variables of odd 

nature and those involving one even quantity and one odd quantity, which are 

respectively 

ao1 ao2 ao1 ao2 ao, ao2 ao, ao2 
{01,02) = --.:- --+ --- :-+ 

azi apt api axi ayi apt ap; ayi 
ao1 ao2 aol ao2 aol ao2 ao, ao2 - - -- - - - - - - - - 
ao, ara ara ao, aV, a r a  alia aa, (2.14) 
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and 

Equations (2.12-15) are extensions of those presented in Ref. 1, where sev- 

era1 properties concerning Poisson brackets of even-even, even-odd and odd-odd 

variables were demonstrated as well. 

An obvious application of (2.13-15) yieds the following nonvanishing Poisson 

brackets: 

The Dirac bracket for systems with a-variables is given by 

where A and B can have even or odd nature. As in the case of usual c-coordinate 

systerns, Dirac brackets are introduced in order to eliminate the second class con- 

straints from the theory, so that the correspondence principle can be applied and a 

commutator algebra of operator associated with dynamical variables can be con- 

structed. Also, as mentioned in Ref. 3, the existence of a set of second class 

constraints guarantees the existence of (cab)-' in (2.17). 

The extension to field theory of the results sketched above will not be treated 

here. We only note that for superfield Lagrangians the matrix representing the 

Poisson brackets of the constraints happens to be singular2*. This is a consequence 

of the existence in supersymmetric field theories of constraints which are different 

in character from those encountered in c-variable field theories. In this latter casez5 

and also for a-variable models of point particles one can ensure that the matrix 

cab of Poisson brackets of constraints is non-singular. In the former case, in spite 

of the impossibility of inverting cab, one can define uniquely - at least for some 

simple situations - a C-' matrix which gives the correct form of the Dirac brackets 

(see Ref. 24). 
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3. Selected examples 

We proceed by presenting some examples of second order Lagrangians. The 

supersymmetric systems suggested here are simple but may serve as a starting 

point for the study of similar Lagrangian models involving fields. 

Nonrelativistic free superparticle 

Inspired by the first order Lagrangian pro~osed in Ref. 3, p. 1864, we construct 

the following second order action 

with 
m i .. = - - z - ~ + - B . B + k z 0 9 ~ ~ ,  
2 2 

( 3 4  

where the simplified notation x (z,) , 9  - (Oa) is adopted, j, a = 1,2,3,9(1) 

B(t1),8(2) r 9(t2), etc., with tl and tz representing initial and final times in the 

action principle, and klo being an even constant. The Lagrangian (3.2) can be 

viewed as a particular case of the more general expression 
, 

with the indices over the 9-vasiables denoting their derivative order. By taking 

Klo = i/2, Kzo=arbitrary even constant, and other KAB = O we obtain (3.2). 

We remark that the motivation for the inclusion of boundary terms in (3.1) is the 

maintenance of the equivalence between the number of boundary conditions and 

that of the order of the differential equations of motion. This need for supplemen- 

tary boundary terms was discussed in detail in the context of a-variable first order 

Lagrangiam3 The equation of motion derived fsorn (3.1) are 
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with extremization of S under the conditions 

The first two conditions given in (3.5) correspond to the (second) order of the 

differential equation (3.4a), while the third condition in (3.5) is consistent with 

the first order equation (3.4b). Thus (3.2) describes a nonrelativistic free particle. 

Using the supersymmetry transformations 

where y E 5 ,  r] % and c is an odd constant, one can show that the action (3.1) 

is invariant under supersymmetry, that is 6s = O under (3.6), with the conserved 

quantity 3: - 8. 

In passing we point out that (3.2) and (3.6) could be expressed in a more 

concise manner with the aid of the superfields 

X(t, r )  e x(t) + irO(t), Y (t, r )  E ~ ( t )  + irrl(t) = ~ ( t ,  7) , (3.7) 

where T is an odd parameter. Introducing the operators 

v. E a p t  , v  F alar + ir a l a t  , v 3 a l a r  - i r  a p t  

we can rewrite (3.6), with m = 1, as 

and the action (3.1) takes the form 

Si(X,Y) = / d t d r { A [ v ( ~ o x ) ]  . X -  KloVoY - V X  

+ boundary terms (3.10) 

To regain (3.1) from (3.10) we make use of the standard integrals / d~ = 

0 , S d r . r  = 1. 

107 
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The superfield f o r m ~ l a t i o n ~ ~ ~ ~ ~  is particularly useful in the case of the rel- 

ativistic superparticle, since it allows a unified description of reparametrization 

invariance and local supersymmetry. 

The invariance of (3.1) under rotations and the Dirac bracket algebra of the 

spin vector components will be discussed in the next section. 

Accelerated superparticle 

Let us consider the actíon 

where KZ1 and c are even constants. 

From S2 we obtain the equations of motion 

the latter irnplying i) = a, where a is an anticommuting constant. 

In the variational principle we have adopted the conditions 

corresponding to  two conditions for the second order eq. (3.12a), and 

three conditions associated with the third order eq.(3.12b). 

We can check the invariance of (3.11) under the transformation 

with the conservation of (ii) - ch). 
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Super  harmonic oscillator 

Now we take the action 

where K and K21 are even constants. 

The equations of motion are 

From eq. (3.15b) we have: -i0 + 2 ~ 2 ~ ;  = A, where A (Ad) is a vector 

whose components are odd constants. In the application of the variational method 

to (3.14) the conditions 

where used. 

As in the preceding examples the boundary terms were chosen to provide a 

consistent extremization procedure. 

The supersymmetry invariance of (3.14) can be verified using 6s = A d ,  60 = 

-e& if the additional conditions A = O and KZ1 = -i/2w2 are imposed, with w2 = 

K / m .  In this case (3.14) describes a supersymmetric harmonic oscillator. The 

bosonic part of the action (which contains the x-dependent terms) leads to ordinary 

harmonic oscillations. The fermionic (8-dependent) terms generate oscillations of 

the superparticle in the space of a-coordinates. 

Extended Bose-Fermi oscillator 
b 

It is not difficult to transfer to the context of second order Lagrangians a 

combined Bose-Fermi model examined in Ref. 23, p. 285. The configuration space 
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of this system is IR, x IR:, where IR, and IR, are the real spaces of c-variables 

and of a-variables, respectively. The action is 

The frequency w is the same in both fermionic and bosonic terms. Thís choice 

assures the supersymmetry invariance. The matrix A is defined as 

and 8 denotes the transposed of the vector B = 

We propose the following extension of (3.14) 

where a and p are even parameters. Concerning the bosonic part we adopt the 

customary action principle with conditions bx(1) = O = bx(2). The fermionic part 

produces the two second order equations of motion 

The four boundary conditions 

have been used. Note that the imposition of the more familiar conditions M(1) = 

O = 68(2), be(1) = O = 68(2) instead of (3.21) implies the inconsistency of eight 

requirements on the 0% and C's for the two second order equations (3.20). The 

110 
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additional boundaries in (3.19) were chosen in order to yield (3 .20)  for bS4 = O 

under (3 .21) .  By the way, the first order action S4 of Ref. 23 must be supplemented 

by a boundary term as well, namely ié . 8 ( 2 ) / 2 .  Then its Euler-Lagrange equations 

wAB + 6 = O are consistently derived under the requirements 68(1)  + 6 8 ( 2 )  = 0.  

When a = /3 one obtains from (3 .20)  the habitual dynamical equations 

In this case only (3.21a) is needed in the extremization procedure, since (3 .20)  

reduces to a set of two first order equations. 

One can check the invariance of $4 under the supersymmetry transformations 

6 s  = iBE , 68 = (i1 - w x A ) E  , (3 .23)  

with 

€1 and €2 being odd infinitesimal parameters. 

It follows that the quantity Q ( 5 1  + wxA)0  is conserved. This Q is, in fact, 

the generator of (3 .23) .  

The action S4 admits a simple generalization leading to a nonlinear ~ ~ s t e m . ' ~  

In a similar manner we can generalize $4 by making the substitutionof S4 by 

This nonlinear Si gives the equations of motion 

i (Vn(x)AB + e )  + 2 ( a  - p)ne = o . (3.263) 

The supersymmetry transformations which leave the generalized Si invariant 

are 

111 
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65 = i[ + i é , ~  , 68 = e[ + [ 5 1 -  V1(x)A]E , (3.27) 

where [ is an even parameter. Qne regains (3.20) and (3.23) for V(X) = wz2/2. 

Relativistic free superparticle 

Here we take 

where (8, 85) ((Op), x z (xp), Zp 5 5,, - iMB,,, p = 0, ..., 3, M and N are 

odd and even Lagrange multipliers, respectively, and again appropriate surface 

terms must be included. 

Extremization of S5 with respect to xp, Bp, 85, M and N gives 

under the condition 

The action Ss is invariant under the supersyrnmetry transformations 

where e = ~ ( t )  is an odd parameter. 

The relativistic superparticle described by (3.28) has also reparametrization 

invariance, i.e. invariance under the transformations 

62 = [i , 68 = [e , 685 = [e5 , 6M = ([M)' , 6N = (EN)' , (3.32) 

[(t) being an even parameter. 

112 
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In the massless limit of (3.28), that is 

we can get an equivalent superfield action which exhbits both reparametrization 

and local supersymmetry invariances united by means of a compact set of trans- 

formations. The result is 

1 %(x, Y )  = d t d r ( ~ ( t ,  r )  [ Z ~ o ~ .  v x  - K2oVoY V X ]  )+ 
2 

+ surface terrns , (3.34) 

where the derivatives are defined in (3.8),  and Q(t  , r )  N ( t )  + i r M ( t ) .  The 

corresponding first-order action is presented in Ref. 8 .  The unified super- 

reparametrization is expressed by the transformations ti  = t + a ( t , ~ )  and r' = 

T + p( t ,  T ) ,  where a ( t ,  r )  and P(t ,  T )  are appropriately defined functions which will 

not be explicitly given here. 

4. Hamiltonian formalism 

In this section we are concerned with the application to our examples of Dirac's 

prescriptions for constrained ~ ~ s t e r n s ~ ~ .  In a11 these examples, after the calculation 

of the Poisson brackets we are left with second class sets of constraints. Hence we 

compute the correspondent Dirac brackets in order to obtain first class algebras 

which can supply adequate structures for canonical quantization. 

The Dirac brackets of angular momentum components are also derived here. 

The spin components result to be functions of odd variables. 

Nonrelativistic free superparticle 

The fermionic part of Lagrangian (3.2) gives rise to the primary constraints 
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ta = íía - K200a m O , 

where ira and íía are obtained from (2.7-8) for the Lagrangian (3.2); a = 1,2,3. 

The total Hamiltonian is 

with F, = mmlt,, and Ma, Na are anticommuting Lagrange multipliers. The bosonic 

part can be treated as a nonsingular first order system with the canonical pair 

(zj,ej), yielding the usual r e s ~ l t s . ~ ~  

We have no secondary constraints, since 

The Poisson brackets between constraints are 

hence the 4, are second cIass and we apply (2.17) to determine the Dirac brackets 

between the odd canonical variables, 

After the introduction of the Dirac brackets the ir, become auxiliary quantities 

proportional to the dynamical variables O,, since 4, = ir, - iOa/2 = O can now be 

viewed as a strong equation. 

From Noether's theorem one obtains the expression for the total angular mo- 

mentum of a second order superparticle. In the absence of surface terms in the 

action principie the result is 

w i t h i , j = l ,  ..., N. 

The first term in parentheses in (4.6) contains the first order (L(l)ii) and the 

second order (L(21ij) angular momentum, with Lij = + L(21ij, while the 

second term gives the spin part Sij = S(l)ij + S(2)ij, also with contributions of first 
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and second order. When the extremization involves boundary terms the correct 

procedure is to take ab initio the variation of the action including boundaries. By 

rearranging terms in 6S and by requiring 6 s  = O under rotations of canonical 

variables one then derives the consemation of the angular momentum. 

Applying this prescription to the action (3.1) we obtain 

In this calculation the variations related to terms containing K20 cancel out, 

so that our result does not differ from that obtained for the first order particle3. 

Moreover, the Dirac brackets between the generators Jij given by (4.7) exhibit 

the usual algebra associated with the three-dimensional rotation group, as can be 

easily checked. 

Accelerated superparticle 

For the bosonic part we have the constraints 

The Poisson brackets between these constraints are 

leading to the Dirac brackets 

In view of (4.8) the p,,p, can be considered as nondynamical quantities after 
- 

the computation of Dirac brackets. Note that from (4.10) we derive {z,, p,)* = Sij, 

the ordinary result for the first order accelerated particle. 

The fermionic part yields 
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{e. e.}* 3 = o = {e,, e,}* = { B ~ , X ~ ) *  = { T ~ , T ~ ) *  , 

The equation ?ri = - 2 ~ ~ ~ 8 ~  = -2K21rjj propagates t,he so that we have 

in this case the dynamical variahles Bj, e,, r ,  and the auxiliary Fj. 

We note that with the aid of the equations of motion we can write the Hamil- 

tonian in the form 

From the consistency conditions on the primary constraints it follows then that 

M j  = O = ~3 = ~ j .  Therefore we have no secondary constraints. 

The total angular monientiim is 

Therefore a second order effect is manifest in Sij. Introducing, as  usual, the 

spin vector 
1 . . si i z€;jkSjk = €;jkK21 (8jOk - 2OjOr) , (4.15) 

where q j k  is the three-dimensional Levi-Civita symbol, we obtain the customary 

algebra 

(Si, Si)* = eijkSk . (4.16) 

Super harmonic oscillator 

In this case the primary constraints are 

m 
(,=p,--y,=O , 

2 
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The formula = :ej - 2Kz1Bj propagates the dynamical variable 0, v, but 

it alço exhbits a relation between Bj and y. If we use 

1 8, = -(A, + ;ej) , (4.18) 
2K21 

derived from (3.15b), we get the additional constraint 

1 
T ~ = T ~ + - - B , + A , M O .  (4.17d) 

2 

In this way we are left with the set of true dynamical variables (z,, y,, e,, 7,) 

with Dirac brackets 

6.. { e .  . i ,  { .)* = -2- . { e .  e . ) *  = 0 . 
" I i> ' l j  7 < >  3 (4.19b) 

2K21 

The absence of secondary constraints can be verified by imposing (4, H T )  0,  

with 4 = ( f , ,  Aj ,u j , r j ) ,  

A - ( A ~ ) ,  F - (M', ~ j ,  R ~ , T , ) .  

The spin vector in this case turns out to be 

Extended Bose-Fermí oscillator 

The c-variable terms of (3.19) are associated with the usual harmonic oscilla- 

tions. The novelty is the fermionic part, which gives the constraints 

The nonvanishing brackets between the dynamical variables B and 6 are 

i 
{ e i ,  e l }*  = - = {82,82)* ; 

4(a - P)? 
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We are assuming a # p. When a = fl  equation (3.20) reduces to 8 + wA8 = 0 ,  

which implies i + u 2 8  = O. In this particular case the Dirac brackets between 

canonical variables become 

The spin is given by the antisymmetric matrix 

s = ~ A I I + ~ A T [ ,  

which has the components 

and S,, = -i8,6,, if a = p. Besides the existence of a difference in sign between 

this S,,, and the Sii of (4.7) we also remark that the first brackets in (4.5) and 

(4.23) have opposite signs, with the consequence that the same algebra (4.16) is 

obeyed in both situations. 

Relativistic free superparticle 

The primary constraints 

have the same algebra of Poisson brackets a s  the corresponding constraints of the 

first order relativistic particle.3 Therefore we get for the real variables the standard 

nonvanishing brackets 

The dynamics is determined by the Hamiltonian constraints 
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which obey the algebra 

X is the generator os reparametrizations and c (associated with the spin degrees 

of freedom) is the generator of supersymmetry transformations. Eq. (4.28) shows 

that c can be viewed as the square root of H, i.e. the supersymmetry invariance 

generated by c is obtained by taking the square root of the effective Hamiltonian H 

of the spinless system .3,6 This H can be written as H = MX, M being a Lagrange 

multiplier, while the Hamiltonian for the spinning particle is a linear combination 

of U and c.  
The invariance of the action (3.33) under the Poincaré transformations 

leads to the conservation of 

Consequently, in both relativistic and nonrelativistic cases the total angular 

momentum of the first order model and that of the second order model coincide. 

This result illustrates the ambiguity associated with the existence of different La- 

grangians describing the same dynamics and giving rise to the same interactions 

of the spin with externa1 fields. 

5. Final remarks 

In summary, we have considered second order Lagrangian models which possess 

a first order counterpart. The prescription of supersymmetry invariance relating 

commuting and anticommuting variables and that of a consistent formulation of 

the variational principle have been adopted in the construction of our examples. 

Along the lines of previous investigations by other authors on the subject of first 

order supersymmetric Lagrangians, we have studied the pseudodynamics of sec- 

ond order systems. The existence of constraint relations has imposed the use of 

119 
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Dirac's approach in order to derive the algebraic structures describing the evolu- 

tion of these systems. We notice that our free particle Lagrangians (relativistic 

and nonrelativistic) of second order differ from their first-order counterparts by 

a total derivative, giving rise to the same equations of motion and to identical 

expressions for the angular momentum, this latter result implying the same be- 

haviour in presence of externa1 fields. The canonical treatment for this class of 

second-order Lagrangians was developed in Ref. 21. 

In the cases representing the accelerated particle and the oscillators we have 

found a second-order effect which is manifest in the spin vector, even though 

the algebra of Dirac brackets between components of the spin vector remains the 

same as that of first order similar models. It is interesting to mention that for the 

super harmonic oscilIator the magnitude of the second order effect of spin depends 

on the value of the frequency w ,  which, from the requirement of supersymmetry 

invariance, is the same for oscillations in c-coordinate and in a-coordinates spaces. 

Thus, in this example, even if the variables which originate the spin belong to the 

space of odd coordinates, a quantity w related to oscillations in ordinary R, space 

does affect the interactions mediated by the spin. 

Another point is the comparison between the introduction of the spin via a- 

variables and the spin effect produced either by properties of the particle itself or by 

properties of its environment. This latter situation is exemplified by Papapetrou's 

method for the derivation of the equations of spinning test particles in curved 

space2'. On the other hand, the spin effect due to the point particle itself appears 

for instance in the worldline limit of the Polyakov model of strings with extrinsic 

c u r ~ a t u r e ~ ~ ,  or in its generalized v e r ~ i o n ~ ~ .  In these classes of models the so- 

called rigidity of the string furnishes a measure of the influence of the extrinsic 

curvature on the motion of the point particle, in the one-dimensional limit. Owing 

to this implicit influence geodesics are not in general straight lines. Other models 

associate the spin tensor with classical spinors representing interna1 dynamical 

variables30. This suggestion is closer to that of the utiiization of a-variables, in 

the sense that in both situations supplementary coordinate spaces are called to 

120 
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intervene with the purpose of creating an appropriate classical scenario for the 

spin. 
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Resumo 

Considera-se a dinâmica clássica de sistemas contendo derivadas segundas 
de variáveis que anticomutam. Apresenta-se exemplos de lagrangeanos super- 
simétricos de segunda ordem. A teoria de vínculos de Dirac é aplicada a esses 
modelos, comparando-se os resultados com aqueles correspondentes a lagrangeanos 
de primeira ordem propostos na literatura. 


