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Abstract W& analyse a farnily of discontinuous orientation- preserving
maps of the circle onto itself. W obtain analytical expression for the
location and for the lengthof each stepof the devil's staircase. e
show that the staircase is complete and that the set of points corre-
sponding to irrational winding numbers is a Cantor set of fractal di-
mension P =0.

Mappings have been used extensively to describe dynamic systems
that exhibit periodic as well as chaotic behavior. They arealso capable
of describing the static properties of systems that possess modul ated
structures' . The standard map* which is studied in connection with the
Frenkel-Kontorowa model of modulated structures is an example of such
maps. For maps of the circle onto itself which are continuous and in-
vertible (homeomorphisms) the following results have been obtained 5%,
The winding number W() is well defined and is a continuous function of
f2, the parameter that describes a family of mappings. For homeomorphisms
that are not pure rotations, W(Q) exhibits a plateau for each rational
value of W, that is, the function W(R) is a devil's staircase. If, in
addition, the maps and their inverses are differentiable (diffeomor-
phisms), then the devil's staircase is incomplete: the set of points cor-
responding to irrational winding numbers has a nonzero measure. Also,
the orbit corresponding to an irrational winding number is topologically

equivalent to a simple rotation what means that the orbit is one-dimen-

sional.

In this paper we analyse a family of orientation-preservingmaps
of the circle onto itself which are not homeomorphisms. Nevertheless,
some of the above results still hold. The winding number is well defined

and constitutes a devil's staircase. We obtain some exact results con~

cerning the devil's staircase including an analytical expression forthe
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width of the plateau corresponding to each rational winding number.
Using this expression we prove that the devil's staircase is complete
and the set of points corresponding to irrational winding numbers is a
Cantor set of fractal dimension Z=0.

Ve study a family of maps of a circle onto itself = = f(z), de-
fined on a unit interval, 0 < x <1, and described by two parameters ¢

and 2 (see fig.1). It is given by f{z) = F{z) mod 1 where
flz) = t{xerp-n) + n n=l}:+9+—;—] (1)

[x] denotes the integer part of . The parameters t is restricted to the
interval [0,1'] so that the maps are orientation-preserving. When ¢ = 1,
the maps reduce to pure rotations. For ¢t # 1, the function f{z) has a

discontinuity when (x + R + é—) is an integer. W restrict the parameter

Q to lie in the interval [0, 4].

1 =7

f(x) Fig.l = The map =~ f(z) for a value
—l of R between zero and 1/2. The slope
of the segments is equal to t.

The study of such a family of maps is motivated by its relation
to a modified Frenkel-Kontorowa model where the cosine periodic poten-
tial is replaced by a contiriuous piecewise parabolic periodic potential %
Suppose this mode! is studied by the method due to Griffiths and Chou®
where a nonlinear eigenvalue equation is set up for an effective poten-
tital. (f the effective potential is approximated by the potential

itself then the map which gives the position of the atoms becomes ident-
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ical to the map studied here. Although, this seems at first a not so
good approximation the results obtained look very sensible. To make con-
tact with this modified Frenkel-Kontorowa model, the parameter Q should
be interpreted as the misfit parameter and (1-¢)/t = h the amplitude of
the periodic potential. That is, the modified Frenkel-Kontorowa Hamil-

tonian should be written in the form
Y e e —)2 4 B - n)?
H{z 1) = g B ey mm - 4 g (@ -0,

where
n; = Erj +1/2]

As long as the derivative of f(x) exists, it equals t, so that
the Lyapunov exponent of any attractor equals log t, except when the
attractor has a point x for which f(x) is discontinuous. This exception,
however, will not occur whenever the winding number ¥(#,Q) is rational.

For a fixed value of t, let (R (L,¥,¢), Q+(L,1V,t)) be the open
interval in the Q-axis for which the map has a winding number W(¢,Q) =
= L/N where L is prime relative to Nand L < N. A necessary and suf-
ficient condition® that the map has this rational winding number is that
the equation fN(xn) = a2 +L has a solution &, in the interval [0,1).If

0
we define x3. by xj = f‘(xj_‘), this equation is equivalent to the set of

equations
t( Q ) . 9+l
X, = X . + -n.,) +n., .= . + + =
J J-1 J J "3 T % ‘_‘ ’ 2)
for § = 1,2,...,N, with the boundary condition Ty = xg+ L. If the pints
X oo X peees Ty are obtained then the ¥ points of the limit cycle
X oo XoeeoaZy are given by x; —-'X. mod 1.

' N-
Multiplying eq. (2) by t ¢ and summing over § from 1 till N we

get the following equation for z,

-

(@ +@)(-¢) +p =0l = ¥ (. -n)T
0 ) Fadl J

J=0

where n =n = 0. This equation, however, is formal since the in-
0

N+1
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tegers By Myo...,ny are yet unknown. |t can also be interpreted as an
equation for £ if zy is given in the interval [O,I). By taking the
limits @ (% - 2)" and x> (:i— - 0% we get @ and @, rerpectively.
Taking into account that ny, = 0 if &, < -;--Rand that »n, =1 if
xoa-;—-ﬂ, and that in bothlimitan:L and n, = 1 (as long as
0£2<3%) we have

2
1+
]

1-2 Y i p-1, 1 Y N-j
[—l—_?V-J [i (14t ') = 3 (1~2) + 'Zz (nj+l—nj)t ] . (3)

+ -

From this expression we see that the length w = @ - @ of the

interval (Q_,Q ) can be obtained independetly of the sequence n, n,,...nN,
- + .

since both € and € are given by the same sequence as shown in the
Appendix. It is given by
N-1 2
t 1-¢
rU8) ()

’
l-tN

w(y,t) =

and is independent of L.
The sum of the lengths of all plateaus are given by

5= 7 ¢Mul,t) ,
N=1

where ¢(¥) is the number of irreducible fraction with denominator ¥ (the

Euler totient function). Using the generating function expansion for

¢(N) 10

Le T e t—NN ,
(1-¢)*  m=1 -t
valid for £<1, we obtain the result $ = 1, so that the devil's stair-
case is complete.

For a fixed t, let C be the Cantor set of points of the devil's
staircase in the R-axis corresponding to irrational winding numbers. The
fractal dimension Dof the set C can be calculated as follows. Let £(V)
be a certain scale and S(¥) the sum of the widths of the plateaus whose
lengths are larger than €(®), and §(¥) =1 = s(¥). The fractal dimension
D is given by
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D= 1im log 5/¢€
e log 1 /€

By choosing €(¥) = w(¥,t) we have
o«
§= 1 d(mu(n?) .
n=l

An upper bound for S(¥) is obtained by observing that ¢(n) € n-1 from
which we get I € 0. Therefore, D= 0.

In the Appendix we show that the sequence n,, Mgsnnn ’nIV is
given by
n = _75[ + 1
g+ - LAl ’
for 4 =1,2,...,N-1, so that the expression (3) gives actually the

limits of the plateau corresponding to the winding number L/N. Defining
the set of numbers o, Opsenny GIV’ which take only the values 0 and 1,

by
°j=[j/% - [‘j‘”% ’

for 4 = 1,2,..., ¥, we have the following expression for 2 and ot

N-1 N-1 :
of = (’“_tlv] B- ey 2 tz (-¢) § o, & ‘7]
1-¢ g=2 7

As an example we have (01,02,...,0N) = (0101101011011) for the case L=8

and N=13. Since OJ. has the property aIV-j+1 = Oj for § =23 ,..., N-l we
can write also
+ o) _ N-1 N-1 .
2 = [_._] tNJ [.i_ (1+tN ]) * t2 (1-¢) + J o, ¢ ]] . (5)
1-¢ J=2 7

In the Timit £>1 of pure rotation we obtain Qi—>L/1V by using the prop-
erty IZV a.=L.
g=1 7
Figure 2 shows the phase diagram in the variables @ and h=
= (1-t)/t. Regions corresponding to several rational winding numbers are

shown. The last enlargernent of the figure presents regions with winding
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(a)
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{b)
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Fig.2 - Phase diagram in the
variables R and h = (1-¢)/¢
where (c) and (b) are two
successive enlargments of

(a). Regions with rational
winding numbers L/N are shown
(b), and (c) with N

up to 10, 29 and 77, respec-

in (a),

tively.
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number L/N up to N = 77. Notice that the widths of plateaus behave as
h/N when h -+ 0.

Let us consider the case of an irrational winding number a. The
locus of points in the phase diagram such that W{¢,2) = a is obtained
from eq. (5) by taking the limit N>« with oJ. now given by

0; = Gol - [G-De] ,

. S - t. .
for j=1,2,3,.... tn thislimit both @ and © approach Q*{a,t) given
by

15 i
2 = (1-%) {.2+ ) o 7 }
J=2

We discuss now the local scaling property of the phase diagram
around the point # = 0 and £ = @ where a is an irrational number. W will
consider only the case where a = (3-‘@)/2, the square of the golden mean
Y= (/5 - 1)/2. The number @ is the limit of the sequence F 13, F2/Fuy,
""F—i/Fi+2"" where Fi are th? Fibonacci numbers defined by Fq'm=F7'_+|
+Fi with #;, = 0 and F, = 1. If | is odd then F7./F7.+2 < a < P41’ 74+ 3"

Given an odd i we define the following change of scales

h+X

[}
N —
iy "
&

]
=y

QY F. (o) ,

42 143
and call this transformation Ti' For sufficient large %, this transform-
ation leads to a phase diagram in the XY plane, showm in fig.3, whose

pattern is independent of .
V& have found numerically that the regions of the plane AR cor-

responding to the winding numbers (QFiH + m Z)/(Q a3t mFH-Z) and
L + 2

( Fk+l MFk)/( Fk+3
lative primes, will map in one and the same region of the XY plane by

+ ka‘_z) with £ and m nonnegative integers and re-

the transformations Ti and Tk’ respectively, for sufficient large < and
k. This region will be labeled (%,m).

The phase diagram in the XY plane, shown in fig.3, has the fol-
lowing properties. The width of the region {%,m) vanishes as 2YX{Z+ym)

when X * 0, and touches the Y-axis at the point
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1
Fig.3 - Phase diagram in the
i — plane XY defined by changing
theoriginal £ and h scales
X around the point h=0 and =
=a = {3-/5)/2 = 0.3819.. ..The
L 4+ values of ¥, and_ Y, are Y; =
= a/(1+a) = (5-/5)/10 = 0.2763
... and Y, = 1/(140) = (5+/5)/
/10 = 0.7236 ... .
o) )
~Y, 0 Y,

oo Yo m
] -¥2 4+ m
The pattern of the phase diagram is invariant by the enlargement X+o~'x
and Y - a”2Y in which case the region (%,m) goes into the region (& -m,
m-1) .

We have analysed here the family of maps defined by eq. (1) only
for 0 ¢ £ <1l in which case the mappings are orientation-preserving. When
t > 1 it is not orientation-preserving anymore and the Lyapunov exponent
log £ is larger than zero. We expect, therefore, the occurrence, in this
case, of a chaotic behavior. This, however, will be the subject of a

further investigation.

APPENDIX

In this appendix we prove the existence of a solution of the

system of eqgs. (2) for which the integers n. are given by

Ol

{] for @ < Q g

(A1)

L -
ny= -1 gl +1 for j=2,...0,

+
where 7 are the stability limits given by eq. (3), and
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G=1@+0h . (A2)

If the values of n‘.7 for 4 =1,...,N are given, it follows from
eq. (2) that the values of Xj for § = 0,1,..., ¥-1 are uniquely deter-
mined. Therefore what we have to prove is the validity of the relation

- I
nj+]—Erj+Q+2J

for 4 = 0,1,...,N-1, or equivalently,

__1.5x3.+§2-nj+]<;: for §J=0...,8-1 . (A3)

Solving eq. (2) for #, we obtain

n, o+ (l—nl)tlvnI
x +Q-n = FQ) - , (AL)
0 N
1 - ¢
where we have defined
N-1
20 SR N SR (A5)
1-% ]-tN ]
J=2
From eq. (3) we have
Feh) = B— a-£") + t”":l , (A6)
-
N
- 1 1+¢
FQ) = = . (A7)
~ 2 ]'tN
PR =4 1t ! (A8)
R A

Using egs. (A4)-(A8) and the fact that F(Q) is an increasing
function of R it is straightforward to show that the condition (A3) is

satisfied for j=0. For § > 1, eq.{(2) gives for @, the solution

G nltg + (1-nl)t2" #5)
x. +8Q-n, = FQ)+ - s A9
7 g+l 127 1 -
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where we have defined

g, ¥l ¥-3 P
G.=(1-t7) } gyt - (1-t") }

J-%
J 2=2 4

t (A10)

4]
2 L

Using the property ON-sey = a3 for § =2,. ..,¥-1, and also the
fact that O is 17if and only if J is of the form [kB8] + I, where B=N/L

and % is an integer, we can rewrite eqg. (Al0) in the form

L

L= m .

¢, = 1 LkE] ) tg—[kB]-] . tN+J-[kB]—|’ (A1)
k=] k= k=m+1

—

where m is an integer such that

(m8] + 1= 4.

;<3 <dg = [m1)g] . (A12)

Since Gg is an increasing function of J for a fixed m we have

: J=1 m
G.2G. =-14+t T + Z {t[kej - t[ﬂls]*[kﬁ]}
79z k=1
L-1
$ 5T Lk8] _ ne[me]- [x6], (A13)
k=mt1
Using the property [x] -~ [y] > [x-y], we conclude without difficulty

that the two sums above are non-negative. Therefore,

P g
G.3G. 2-1+¢t% 2.1+, (A1h)

In quite the same way we can demonstrate that

J " . -
6. <q, <t - Vg d 4 (A15)

Using the results (A6)-(A8), and (Al4)-(Al5) in eq.{(A9), it is
a simple matter to show that the inequalities (A3) are indeed satisfied
for § =1,2,...,8-1.
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Resumo

Analisamos uma familia de mapeamentos no circulo sobre_si mes-

mo, gue s3o descontinuos e preservam a orientagdo. Obtemos exoressoes ana-
liticas para a localizagao e para a largura de cada un dos degraus da
escada do diabo. Mostramos que a escada é completa e que o conjunto de
pontos correspondentes a nimeros de rotac&do irracionais é un conjunto de
Cantor de dimenséo fractal D = O.
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