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Abstract An infinite series representation for the correlation or
Schwinger functions of the two-dimensional infinite lattice Ising model
is obtained in a very simple and transparent way from a infinite lat-
tice Feynman-Kac (F-K) formula in a Fermion Fock space, In the F-K for-
mula energy-momentum and field or spin operators are defined utilizing
two sets of canonical Fermion operators which are related by a proper
linear canonical transformation (plct), i.e. there exists a unitary op=-
erator which implements the transformation. By exploiting the special
properties of the plct we prove a generalization of Wick's theorem.
Substituting the spectral representations of the energy-momentum oper=
ators in the F-K formula an infinite series representation for the
Schwinger functions is obtained. The terms of the series are evaluated
explicitly by a mere application of the generalized Wick's theorem.From
this series representation scaling limit Schwinger functions are also
obtained.

1. INTRODUCTION AND RESUCTS

In' two finite sets of Fermion operators {Ek} and {52} (the
{k} and {2} are wavenumbers belonging to distinct sets) and their as-
sociated vacuum vectors are employed to determine the eigenvalues and
eigenvectors of the transfer matrix of the periodic two-dimensional
finite lattice Ising model. Abraham® uses a finite lattice Feynman-Kac
(F~K) formula for the correlation functions and the fact that {Ek} and
{Epv} are linearly related to develop a system of equations for the
matrix elements of the spin operators occuring in the F-K formula. Gen-
eralizing these equations to an infinite lattice he obtains a system of
integral equations which are solved by giving an ansatz forthesolution
and an infinite series representation for the correlation functions is
obtained. Each term of the series is an integral of a function given by
a recursion relation reminiscent of Wick's theorem which was a surprise

to the author and left unexplained,
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In a previous article® (the notation and results of B:] are
used in this article) we obtained a F-K formula in a Fermion Fock space
over Lz(-ﬂ,ﬂ) for the infinite lattice correlation or Schwinger func-
tions. The F-K formula is expressed in terms of energy-momentumand spin
or field operators which in turn are defined in terms of the two sets
of free Fermion operators é(k) and E(k). In this way we have defined
the quantum field theory of a scalar field associated with the infinite
lattice Ising model, The :E operators are the usual Fock representation
and the é are related to é by a linear canonical transformation (1ct)
implemented by a unitary transformation U and the sets {€}, {&} have
the vacuum vectors lﬁ and Llj = U@, respectively, belonging to the Fock
space. In this way we carry over the algebraic structure of the finite
lattice to the infinite lattice and consideration of the infinite tlat-
tice limits of both of the finite lattice vacuum vectors becomes un=
necessary. By using the special property of U, namely U=U*= U—l, which
follows from the fact that the reverse transformation of the let is it-
seif, a generalization of Wick's theorem for vacuum expectation values
of products of Fermion operators is proved (see Theorem II1 below).

As shown in® the infinite lattice Schwinger functions admit a
series representation by inserting the spectral representations of the
energy-momentum operators in the F-K formula. W have

n -H(n,-n,) -iP(mz-ml) " ~H(n,-n,) ~2P(m-m,)
8y = W, o) e e g, e e

-H{n,-n ) -<P(m, - ) R
o T -1 T T - LR (.

Thus Sk has the representation (for T>Ta)

{OL-} {B .} -Y
= T J X o B,
kN {ai}i{a.} Ja T facd @ g g, e )
(x Zac e-YOL;.; ) (x & e'Yak_‘ ) (x & q’]) (0.2
62’ 1 o] Bk"z 1 -1 ak-‘ 1

3
where {Oti} = {o, ,aa,...,ock_l} and {Bj} = {Bz.’Bu""'Bk-z} and oci(Bj)

169



Revista Brasileirade Fisica, Vol. 16, nQ 2, 1986

take on odd (even) integer values, In eq. (1.2)

T - -
Xy, = ' E*(ql).-.é*(qa')w
7 oti. 1

]

Xg = = E¥ (). Ex (kg )Y

J Bj! J

]

thus

(X 9% Xg) = (B, Ela))...B(a)) o] E(k) .. .E"(kJ¥) / /aT /BT

(Xg» ng Xy -

W set

<k

- x -tk iq -
BT /BT (ke 0y xg) EHET (6D ), the e
argument occuring in order to take advantage of symmetry properties dis-
cussed below, In section 2 the explicit evaluation of the matrix el-
ements occuring in (1.2) is reduced to an application of the generalized

Wick's theorem. In this way we obtain

Thm. | .

@) 81 . y .
[a [ a9 Fole, F™, o 16,

S, =
k
{ag{Bj}

|(%9) )

~ik iq -1k
W) g 1D ) ™) Ly

1Bz

: -y, Y Yoy
Ol Ve Mo P e (1.3)

wi th
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P @) = d @0 @) (@.0).

m+l ,n
. 5 3 1 )n 1/2
exp [7, jzl ¢qj/(m. (n-m)(2m)") :l .

1/2
]:(det 4) / = Pfaffian A where A is the anti-symmetric matrix

0 O—I O-m -m+1 E)_n
"0y 0 ) Tom Tl mel Meln
0 . .
. -m-=1,m
A = . m
+m  m+1 +nyn
O Mot me2 .. Memtlyn
0
0 m_,1 P
_@_n 0

and
(.0) = (det 73 1), 0, (8) = [loy=a) (m,-a)] ",

0_(2) = [(&y-2"") (e,-a 1712,
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2. 2. X
777 , zkz
my(2,J) = m (2, J) = E:—;J—:T [9_(ZI)O+(22) t @_(zz)e+(zl):] 2y =@
n n
= Y = = =
Yot.(YB .) L S(qi) (ni+l ni) * Z 9 (mz+l ’ oLj n(BJ. n)
Jg g 7=l
Remarks
1, Recall (see [10]) that if A is an nXn, n even, antisym-
metric natrix with elements aij then Pfaffian A = I/Zn/2 1/{(n/2)!
_4ySgnP 1/2
LoC0M ey, G, = (detd)

Perm n-1tn

P
reet) = OF (12,00 )
where (%,,%,,...,4 ) is a permutation P of (1,2,...,m) and (-1)" thesign.

Set Pf A = (1,...,n). Under permutations (%

We have the expansion rule
n . . ’
(o) = 1 D (1) (1,00, 800,480, 061,040, )
g
where we take (Zj) = (42),

2. For the two—point function A reduces to only the upper left
-hand corner and M* (¢ I(ezq)l, al)Mr(d)l(eiq)l,ocl) a [detd].

3. For the four and higher point functions the singular func-
tion my appears. In the integrals occuring in Sk the principal value 1is
to be taken, as expected, since the terms of the series are l1imits of
discrete momentum sums.

4. Note that Sk has an overall factor

ki _ (1 - (sinh 2¢ sinh ZK)zj)lla/cosh Ktk

- Ak *
@,5)° = (det 7.7,)

5. Similar considerations hold for T<TC

An infinite series representation for the scaling limit
Schwinger functions from above the critical temperature Tc is obtained

from Thm.l in a straight forward way by introducing a scaling parameter
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X>0 and letting the ternperature depend on XA; the limit is then taken in

such a way that

T() > T, T(A) > T, for A > 0

A0 (1.4)
Ng=my = © with (-1} % = (82-8;) fixed
Myp=my + @ with (Ma=my)A = (2-%1) fixed

(2K*-2K) /A »m >0,

m being identified as the mass of the single particle state.The scaling

lirnit is given by

~ Ak
Thm.11. Divide S of (1.3) by the overall factors (lb,lb)/@_(w)k
and take the pointwise limit in cach integrand of each term of the ex-

pansion, The result is the set of scaling limit Schwinger functions {57[;}

where

{a.} {B.}

Se= 1 Jae T a7 F0ie), ) Fen, , 10),)
{a,)8.}
X X
Py g 1)y () B ((-p)]’Bk_zl(p)],ak_l)
-p -p Y
B, Oy, _
Folep),, de ‘e e ¥ (1.5)
k-1
with
x ! 1/2 _ .
L ((p)l ml(p)m_” n) = =73 [(det B) = pfaffian B

vl V/{n~-m) ' (2m)

where B is the anti-symrnetric natrix
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0 1 1 1 i . . 1

- c v e e . b

! 0 A-IZ A-]m A+],m+l +1,n

. A—m-—l,m:
A

B = -1 0 A+m,m+l o, n

-1 0 A-rn+l,m+2 A~m+l,n
'A—n—l,n

-1 0

wlp.) * wip,) s
Ai(ﬁyj) = ‘——7/'——41" ’ w(P,L-) = p; + mZ: dp(P) = dp/w(p)

for
OLJ. = n(8j=n)

The series (1.5) converges for altl 5, such that sj -8 >0 for all
J =2 ...k

Rararks:

1. From lemma |11.1 the overall factor that is taken out ofq(
behaves ar (T-T(‘)k/8 for T = T . Also the integral of the singular func-
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tion Ay is to be interpreted as a principal part integral.

2. W do not concern ourselves here with the approach to the
limit but only the scaling limit itself. For the approach to the limit
for the 2-point function see refs.2 and 4.

3. In [5] series representations for the scaling limit func-
tions are given; whether or not their, or our, representation satisfies
the Osterwalder-Schrader axioms® or whether they can be used to define
a Wightman field theory is an open question. In our case the point in
question is whether or not the real time concinuations of our represen-
tation are tempered distributions. Abeginning analysis of the represen-
tation of ref. 5 has been given in ref. 7.

4, 1r®°% a formal expression for Heisenberg operators associ-
ated with the spin operator in the scaling limit is given. The operator
is written in terms of a seif-conjugate Fermi free field and eiiergy-
-momentum operators are not separately defined.

5. In section 3 we give the proof of Tnm. 1l for k = 2 and
sketch the proof for k > 2. A detailed proof for k > 2 will appear in a
forthcoming paper.

6. Related to remark 3 is the question of whether or not a
Feynman-Kac formula for the scaling limit Schwinger functions can be
written in the Fermi Fock space over LZ(—OO,°°). Formally it isobvious
how to write such a formula but the analog of the kernel C is no longer
Hilbert-Schmidt in the L?{-~,») case.

Theorem | follows in a most transparent way from a genera-
lization of Wick's theorem, which is proved in Section 2, forthevacuum
expectation values of products of Fermi operators where one vacuum is
the usual Fock vacuum for the EA; operators and the other vacuum is @=Utl)’\,
the vacuum for the é operators, U implements the Ict, i.e. E =U§U-1 and
satisfies the special property U-1 = U, We have

Thm. i1, Let g(f) be the Fock representation of the CAR in a
Fock space built over the Hilbert space L and let &(f) = g(Tlf)*‘g*(Tzf)
be a linear canonical transformation, with ker I; = 0, implemented by
the unitary operator U, i.e. E(f) = UE(f) U™ and E*(f) = UE*(f) U}
for all ¥F € L. Let 1’13 and lI) = U@ be the normalized vacuum vectors, i.e.
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ENV=0and ENT =0 for all F¢ L,and |91 = 19l =1, in addition
assune that U=' = U= U* if 4, 2=1,2,...n, nevenis an arbitrary

linear conmbination of &, &%, £ and z*, then

-~ S

W, 4., 4, V)
@, %)

where D is the mx anti-symmetric natrix

1/2 _
= (det D) /% = Pfaffian D

0 D]2 ......... D‘ n
D 0
ped_ _ R
@9 s Dy =l A5 0)
0 Z77'z—l,n
'D],n ..... e . '-Dn-l,n 0
Remark:
If U =1 then ¥ = y and we have the usual Wck's theorem i.e.

the vacuum expectation val ue of a product is the sumof the product, up
to a sign, of the vacuum expectation val ues of all pair contractions.
The above is a conpact way of giving the correct sign to each terminthe

sum

The matrix el enents occuring in {1.3) are eval uated using Thm
i1l in the fol l owing way. Since

7:¢ ~ - -1:¢ ~
G- L[ee 8@ rie ?tala
V2T

the matrix el ement #° can be reduced to the evaluation of the natrix
el enent without @, call it M Qne applies Thm, ({1 to M reducing itto
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a sum of products of the generalized pair contractions

(0,E (k1) E(k2)D) (1.6a)

(B,E% (k) E*(-k,)P)  and  (,E(k))EX(-k,)T) . (1.6b)

Symmetry properties show (see lemma I1.1) that (1.6a) and (1.6b) are
equal so that only two distinct functions enter in the final expression
for M Using Wiener-Hopf methods an explicit formula given by a contour
integral is found for these functions and their evaluation s reduced
to contour integration. Another contour integration gives M.

2. PROOF CF THMS. | AND 1

In this section we first prove the generalization of Wick's
theorem (Thr. !11) and then prove Thm.| for the representation of the
infinite lattice correlation or Schwinger functions. Note from ithe proof
that the matrix element for the 2-point function only uses the special
property of U, U":L = U, and the usual Fock space inner product.

Prf. of Thm. t1t: By multi-linearity and the anti-commutation
relations it is enough to show that the theorem holds for (&, 5(]"1) .
EG)D and B,E(F)., E(FDEX(F, ). E* (£, )¥) for n, m arbitrary and
T real.

By substituting U £(f) v for £(f) and using U* = U we have

@EF) . LEEID = G,8(7).. £ )D)

Ex(5) .. B (F)P,0). (2.1)

Recall that ¥ = UJ has the explicit form

<-
Il

U{I; = (Uj,lll\)) exp {- -;—f Clz,y) E*(2) Ex(y) dx dy}@
where (0,§) = (det 7% Tl)l/l‘ and C(x,y) is the kernel of the anti-sym~

metric operator I'}=! T ), Substituting for ¢ in (2.1) only the n/2 term

of the expansion of the exponential contributes and we get
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(E*(k,) ... Ex(x)8,0)/(5,0) =
-n/2 - P
2% (mr2)17* B(-1) C(ky,kp) oo (R, |0k ). perm {&,.. .k}

The right side is just (det nY? - Pfaffian F where F is the anti-sym
metric m¥n natrix with el enents F.l‘.7 = C(ki’kg,‘)’ i<g. But for n=2

@, EFNEFND) = E*(F)E* (T

Jc(klgkz) (qj,lﬁ)fZ(kZ)fl(kl)dkl dkz

i

so that the theoremfollows in this case. Now by anti-commutation

@G EE ) = (£,,F) @,

Si nce

@B E)EED) = EF)T, E¥) =0,

Again by anti-commutation

~ o~ ~ - ~ n .
DE() . EEEE,, D) = jzl 0T F)
WE) B NEE, ) EG)D

whi ch upon substituting

G EENEE,, VD) = (555,

n+l

~ A 2]

@0 7@ E) L EEE e, D =

TR N

FnG FopErr
L TR

-~ 4 -~

@0 0,6 ... E(F DE(F,

B D) (2.2)

The theoremholds in this case since the right side of (2.2) coincides
with the theoremby the rule for the expansion of a Pfaffian. Finally,
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for n fixed, an induction argument on m shows that the theorem tiolds for

@E() . EENES,, ) - X (F,, D). Ve now have

Lemma 1.1, Let
2%, _
my(3,,3,) = [0 (21)0,(3,) * 0_(2,)0, (21)] ,
=1 z, 2,-1
1 i(¢1+¢2) - A
0+ =" T e (‘p,w ,
p) T(b1+92) .
e.= w5 ¢ (g, )
where
0,(2) = [z,-2) p-2)]"/*
0 (2) = f:(acl-z-l)(2,-2-1):)-1/2
and 0 = O+O_ ’ then
o ik,
a) (V,8(k2)E(kIV) = e m_(2,,2,) ,2,=¢

b) (F,E% (k) E* (k) P) = (F,E(k)E(R,)D)

) (1,8, E* %)) = (1, E(k,)EX(K)D)  and
- R “ k.
b, E(ky)EX(-kIV) = e, m (21,22), 2, = e v
Remark: The singular function m, is to be interpreted as the inverse
Fourier series transform of the Fourier series of m_ calculated by using
the principal value integral.
Proof of lemma 11.1:
a) From the proof of Thm. I1l (@.é(k2)€(k1)@)/(x§,$) = =C(k;»k,)

where (7} (k,.)c(.,k")) (k,k') = 73(k,k'). Ty and Y of ref.3 are related
by Y = -H Lo g2, mid 7, " Furthermore in ref. 2 it is shown
244

that vy 3 e Y 2-27’¢ has kernel zero thus Y has kernel 0. By contour

integration
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’ 2z 3z,
(¥ f_(.182)) (31,2,) = =
21 3,-1
(0(2,) 7' 0(z) ™ = 1) = 0(2) 7" O(2,) 7 K(zy,25) o

where f_(3,,8,) = @(2'1)-1 G)(zz)_1 m_{2,,2,), the integration con-
veniently being carried out for 1 < [z,] < x, and then passing to the
limit {3,] = 1 which agrees with the principal value integral since f_
is analytic in 2 in an annulus about ’zzl =1 for IZ;| = i. Thus Ym_:h,

which is equivalent to T{C = T, since from®

-i($,+0,) o
m_ = G(ky,k,) = -e VU gy B C(ky,kz)  so

2 (1492)
e

-Gk ,k2) = 5 m_(k1,k2)

C is unique since dim ker T = dim ker Y = dim ker ¥ = 0.
b) By substituting £(k) = UE(k) 0" in (§,E(-k,)E(~%,)}) weget

Taking thecomplexconjugateof (T} C(.,k,))(k,,k,) = T}(k,,k,) and

changing k,, %, to —kl, -k

N we get

2
(T} Cl=,k,)) (kLK) = = Tk, ,k,)
so by the uniqueness of the solution (ker T; =0)
Clky,=kz) = ~Clka,ka) = (,E(k)EKD)/ (W, ) .

c) The first line follows by substituting U?,(kl)U_1 for £(k,)
and using U™' E*(k,)U = g*(kz). Substituting

Ex(-k,) = S E*(g)T,(q,-k,) dg + S E(@Q)T,{q,~k,) dg
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gives

@,E k) E*(-k)F) = (B,0)F, (ky,-ky) + 1 T, (q,k,) (0,E(k,)E(@)0)dg

(2.4)
Define W= -7 +e 2% g 2% Then
Pola,~ky) = T,(-ky,q) = '2_]’[ (e'“b W e"“b) (ky,q)
so that the second term on the right-hand side of (2.4) becomes
¢ -Z¢ - . - = ay T(d+0,)
H (e__—’z’__] (k1,0) F,E(,)E@ D) dg = L) () (y JK,)
(2.5)
Ty
By contour integration, carried out as in a), setting ¥_ = —ezwh’é %0
z. 2
(o12,)) (5,,5,) = 2f, (3,,2,) + ———x |1+ !
Y £ (2,00 zy,8,) = 2f 12,,5, 7,7,-T O(z,0(z,7
where
f, = G)(zl)-1 @(zz)—1m+(zl,zz)
so that
2 3,03,
-(Wm ) (z1,22) = 2m+(zl,22) A (0(2,)0(z,) +1 ).
Thus eq. (2.5) becomes
. 2{¢,+¢,) 1 zz, -2 ($,492) 75(¢1+¢2)\ o
(- 55 e m (2,,8,) -2 23,-t (e te ))(¥,¥)
(2.6)

and the 2nd term of (2.6) cancels the 1st term in {2.4) giving the re-

sult,

Remarks :

1. The function f_ is not simply an ansatz far the solution of
eqg. (2.3). Inref.2 it is shown that, by passing to Fourier coefficients,
eqg. (2.3) becomes two Toeplitz matrix equations which can be solved
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using Wiener-Hopf factorization, ©(z) admitting the factorization @ =
= 0, 0_where 0 (6)is analyticand non-zero in |z| < 1 (]z{ 3 1). By
the theory of these equations (see ref,11) the unique (follows from ker
Yi = 6) solution can be explicited as a contour integral invelving % and
the known functions in Y+ as on page 230, eq, (13.8) of ref.1l.

Proof of Thm. I: The proof of the theorem reduces to showing that the
matrix element

Zk

), ™) ) = B B, ) oF Bk ) B R D)

ml n

has the representation given by the theorem, Substituting for o, in

terms of £ and £% in ¥ gives

% % i - A a
F1E, e, 0 = [e70 @i, B, E@Er k).
LB ROD - LG [ e R
V2T
Bk,  VEX@IEX (K ) ... Ex(-k))de . (2.7)
Letting
w(e™), 1) ) = @8R ) ER BN )L EX(Ky)D)
1,m m+l,n P o) m !
and using anti-commutation we can write (2,7) as (& = e—in/k)
m
B J-m i ik ik
U o LT Ry g 1 ) ¢
1 - -i¢q Tk -iq,, 1k
%a j e M((e )],m’e | (e )m”’n) dq . (2.8)
Now from Thm. i1l using the rules for the expansion of a Pfaffian we

have
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T LI S o - ik ik = a2
o b (07T @B R DEXR DM 1), ) 0,0
n fom-1,~ - ~ <k ik = -2

+ J-Zm NI, ERD S (KD DH(ET), 185 Ly ) (9,0
S rme] . ik, ik . .
= 3,0 Z[jzl DI e, e o™y, | 1)y )
n N ik ik, . ,
+ J-Zmn (0 Dy ), J)M((e“‘)‘,m_]|Aj(e7'k)m+],n)] (2.9)
Substituting (2.9) in (2.8) gives
e ¢ jm -k i k i k
'f'ﬁ jzl (0 Tue e 1, )
A= , m , k. . ,
U I R B L A e Y S P
Ner J=1 J ’
" . Tk
ik _nd-(me1) o =iq) SNy
(€ et ) * J_Zm” (-1) ue | e 9)
. o
(™) 18,7 )Y (2.10)

ik, . . ik,
Substituting from lema 11.1 for Mle 7, e “|4) and M(e *9 |e I) we
find for the integrals in (2.10)

-i¢ ik, . -ik ., ok, ©_{2.)y _ .
je Tye 7, e |¢)dg = |+ e 7 -ie 7 5__5;37 W,9)

and

-9 .tk k.. -
J e Ty /Lq]e Ndg = (~e ¢ O_(zj)/e_(w))(w,w
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so that (2.10) becomes

m g T, . .
oo jzl (-1 e o_(2)/0_(=) .M(Aj(etk)],ml(etk)mﬂ,n)

3=

- n . ’l:¢k . .
_a _yyd-m-1 ;o . Tk 7k
= Lo e T (O (s)/0 (=), MU, I8

(e™)

)

m+l,n
J=m+)

which agrees with {1.3) by the expansion rules for the Pfaffian re-

i k
m+l,n) and M((e )]_m

caIlinE that the matrix elements M(Ag(e ’Lk)] nl (e’bk)
’
) have a Pfaffian expansion by Thm. 1ii, the terms being

|
Mj(e )m+l RO
sums of products of the functions ™M, by lemma 11.1. Also by lemma 11.1

an overall factor of

) om
Y
=1 "R

vy

is present.

3 SCALING LIMIT

W now take the limit from above the critical temperature in

the way described in the introduction. First recall the definitions:
_2< -

tanh k* = e , £1 = ctnh K* cthn Kl,, x, = ctnh K/ctnh K*, K = JT 1, and

the derived identities tanh K= e_ZK and sinh 2X. sinh 2K* = 1. W have
£3 * -2
ez(K+K ) 2K e K >1, zy >z, for T > Tc

since X* > X, For T = T, #, =1, 2 = e and e?fc - 1+ /2 follows

from sinh? 2%, =1,

x, = > 1 for all Tand x2 = e

We consider directly the series representation (1.3) of Thm. 1.
Make the change of variables ¢ = Ap, K = Ap in all integrais. Thus the
integrals will be over the interval -m/A to T/A and if M has n vari-
ables we can group the A factcrs such that ¥ has a factor )\n/z, Thus

in addition to the energy factors and overall factors in ° we consider
2
A

the factor A. We will need lirnits of the various functions that
appear in (1.3) and (1.4). W have
Levma fIl,1 Let Tim mean the A»0 limit as described in (1.4).
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Then
hx

a) limz, =1, limz, =e T (1D

b) lim e -(—}%)- = %m®) Y = w(p)
¢) Let 6, (2) = (5,-2) " (m-2)'"%, 0_(2) = /(-2 H'/° .
(,-5"") /% and 6(s) = 0, (2)0_(). Then
lim O+(e7;)‘p)/>\1/2 = (-2lpsin)) ' VT (1473

1imAaY 20 (™) = 1/(G-im)? v (1+/D) )

. . 1/2
Tim 0(e*P) = E-*—Eg} , Vim0 (@)1 = VEE,) = 1 4 VT

d) (\T’,‘T’) = (det TTTl)l/“ = m/cosh K* where
m=[1 - (sinh 2K sinh 28)2]"/®  ang

.- x* - 1/8 - 1/8 ;
lim{m/cosh K*)/|k Cl (4 cosh ZKO) /cosh K,

e) lim ?\m+(e7’)\p, e“q) = - I ‘U(P)iw(q')J
(p~im) 1/2 (q-im)l/2 p+aq
Proof of lemma I11.1: a,b,c and e are immrdiate. d) The identity (§,¥)=

= M/cosh K* follows from refs. 3 and 2,

Proof of Thm. 11, Theoverall factor (0_(«) (lﬁ,f])))k that is dividedout
behaves as (T-Tc)k/S. Now the factor ei 32\ %j that occurs in (1.3) will
also appear with its complex conjugate to give 1. in M as seen from
¢ and e there will be an overall factor of ﬁ (pj"im)-l/z WhiChn also
appears with its complex conjuagate to giveJ;rlme overali factor jﬁ]w(pj)-l

accounting for the weighted integrals in (1.5) and the formof the matrix
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B in the theorem. By b) of the lemma the exponential energy- momentum
factors of (1.3) converge to those of (1.5) .

Concerning the convergence of the 2-point function recall
Hadamard's inequality: If N is an nxn matrix with matrix elements n..,

d
then

|det m| < /2 {max | n..|Y* .
i

Applying this inequality to the n th term (# odd) of SJ,Z and using the

fact that sup [A (p,q)| € 1 we obtain the bound
j2ryes

-w(p }(8,-8,1)

(nt(2 )" (F — &), (1) D2
w(p)

which implies convergence of the series by the ratio test.

For k>2 Hadamard's inequality is not directly applicable to foud
or L since the singular functions A+ appear. A bound on L is obtained
by expanding the Pfaffian of B as a sum of terms where each term is a
product of a fixed number of A+'s times the product of two Pfaffians
which only involve the & 's, Each one of these terms is bounded by
using Hadamard's inequality on the Pfaffian of the 4_'s and using the
fact that with respect to Lebesque measure the denominator of A+‘/Tr is

the kernel of the Hilbert transform of norm 1,
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Resumo

Uma representacdo em série das fungoes de Schwinger (correla-
¢do0) do modelo bidimensional de Ising na rede infinita é obtida de um
modo muito simples e transparente por uma férmula de Feynman-Kac (F-K)
num espaco de Fock fermionico. Operadores de energia-momentum e campo
(ou spin) sdo definidas na formula de F-K utilizando dois conjuntos ca-
ndnicos de operadores fermionicos relacionados entre si por uma trans-
formacdo linear candnica propria (plct), i.e., implementada por um ope-
rador unitario. Explorando propriedades especiais da plct, estabelece-
mos uma generalizacdo do teorema de Wick. Substituindo as representacoes
espectrais dos operadores de energia-momentum na féormula de FK, obtemos
a representacdo em série das fungdes de Schwinger. Os termos da série
sdo calculados explicitamene por uma simples aplicacao do teorema gene-
ralizado de Wick. Usando esta representagdo en série, obtemos também as
fungbes de Schwinger no limite de escala.
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