Variational Coupling Between q-Number and c-Number Dynamics

C. MARCIO DO AMARAL*

Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, 21944, RJ, Brasil

and

S. JOFFILY

Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, Rio de Janeiro, 22290, RJ, Brasil

Received on 21 de dezembro de 1984

Abstract We generalize the time dependent quantum variational principle for Hamiltonian operators, which contain real parameters and its time derivatives. The consequent variational system is formed by a Schrödinger equation coupled to Lagrangian equations, where the Lagrangian is the expectation mean value of the parametrized Hamiltonian operator. This dynamics describes the interaction between a q-number sub-dynamics and a c-number one. In the zero order W.K.B. approximation, the variational system is reduced to a Hamilton-Jacobi like equation, coupled to a family of Lagrangian equations. The formal structure of the parametrized variational principle postulated in this paper, may be convenient as a starting point for the formal treatment of generalized semi-classical models.

1. INTRODUCTION

Dynamics which involve c-number and q-number variables are called semi-classical dynamics. The study of semi-classical models is of great importance for the understanding of the transition from a purely quantum behavior to a classical one. Many interesting papers dealing with semi-classical dynamics have appeared recently\(^1,2,3\). Sudarshan and Gordov start from a quantum dynamical model which, later, is reduced to a semi-classical description. In his paper, Sudarshan imposes super-selection rules, while Gordov formulates his model in an extended Hilbert space. Liran\(^4\), Schütte\(^5\), and Griffin\(^7\), which are interested in the non-adiabatic nuclear behaviour consider, in their models, the existence of a collective dynamics, represented by time dependent real parameters, coupled to a microscopic quantum dynamics. In all papers listed above, the proposed dynamical equations are not of variational origin.

* Work partially supported by CNPq (Brazilian Government Agency)
The purpose of this paper is to establish the variational equations describing the coupling between the q-number and the c-number (parametric) behaviour of the same global dynamics. For this purpose, we start from a generalized quantum, time-dependent, variational principle with a Hamiltonian operator depending on real parameters and its time derivatives.

The resultant set of variational equations is formed by a Schrödinger equation (whose time evolution operator is the parametrized Hamilton operator) coupled to a family of Lagrangian equations. The Lagrangian is the expectation mean value of the parametrized Hamilton operator. The W.K.B. approximation is evaluated and we show that in the zero order, the system of equations is consistent with the expected classical limit.

2. CLASSICAL ACTION FOR PARAMETRIZED HAMILTONIAN

Let us consider the classical parametrized Hamiltonian

\[H(x^j, p_j; x_j^J, z_j^J) = \sum_{j=1}^{n} x^j p_j - L(x^j, \dot{x}^j; x^J, \dot{x}^J) \]

(2.1)

where \{x^j, p_j\}, \(j = 1, ..., n\), are pairs of canonical variables and \{x^J, z^J\}, \(J = 1, ..., R\), are R pairs of real parameters and its time derivatives. The \(n\) coordinates \{x^j\} are cartesian and orthogonal. The \(R\) parameters \{x^J\} are cartesian orthogonal coordinates in the configuration manifold, \(\mathcal{V}_R\), of an external dynamical system in interaction with the internal canonical one. The presence of the parameters in eq. (2.1), will allow the formulation of a variational classical principle for the interaction between the internal and the parametric dynamics. In the simplest cases discussed in the literature, the parametric dynamics acts on the internal system, without the corresponding reaction, which means that the quantities \(x^J(t)\) are prescribed.

By convenience we postulate the determinantal regularity conditions

\[\frac{\partial^2 L}{\partial x^j \partial x^k} \neq 0 \quad ; \quad j, k = 1, ..., n \]

(2.2)

Let us consider, then, the classical action

478
we now construct two independent first order variations, δ_1 and δ_2, for eq. (2.3), such that $\delta_1 \dot{\omega}^j$ and $\delta_2 \dot{p}_j^j$ are independent and arbitrary, but with
$$\delta_1 \dot{x}^j = 0$$
and later we take $\delta_2 \dot{\omega}^j$ arbitrary, but with
$$\delta_1 \dot{p}_j^j = \delta_2 \dot{p}_j^j = 0$$
In both variations, the time is not varied. As a consequence, we obtain the following variational equations
$$\ddot{\omega}^j = \frac{\partial H}{\partial \dot{p}_j^j} \quad ; \quad \ddot{p}_j^j = -\frac{\partial H}{\partial \dot{\omega}^j}$$
$$\frac{d}{dt} \frac{\partial (-H)}{\partial \dot{x}^j} - \frac{\partial (-H)}{\partial x^j} = 0 \quad (2.4')$$

The system formed by eqs. (2.4) and (2.4') specifies the interaction between an internal Hamiltonian, dynamics and an external, parametric, Lagrangian, dynamics.

Let us take a new variation Δ, defined as
$$\Delta = \delta + \Delta t \frac{d}{dt}$$
which varies also t_1 and t_2 in eq. (2.3). Now, the $\Delta \dot{\omega}^j$ are free, but we impose the constraint
$$\Delta \dot{x}^j = 0 \quad , \quad J = 1, \ldots, R \quad (2.5)$$
As eqs. (2.4) and (2.4') are considered valid between the extrema t_1 and t_2, we have
$$\Delta A(\Delta \dot{x}^j = 0) = (\delta + \Delta t \frac{d}{dt}) \int_{t_1}^{t_2} \{ \dot{\omega}^j p_j^j - H \} dt =$$
$$= [p_j \Delta \dot{\omega}^j + \Delta t \dot{\omega}^j p_j^j - \Delta t H] \int_{t_1}^{t_2} \frac{t_2}{t_1} = [p_j \Delta \dot{\omega}^j - H \Delta t] \frac{t_2}{t_1} \quad (2.6)$$
Developing the left hand side of eq. (2.6) in terms of λ_{x^j} and λ_{t}, which are independent, we have in place of eqs. (2.4) and (2.4'), the new variational system of dynamical equations

$$\frac{\partial A}{\partial x^j} = p_j ; \quad \frac{\partial A}{\partial t} = -H$$

(2.7)

with the constraint

$$\lambda_{x^j} = 0 \quad , \quad j = 1, \ldots, R$$

(2.5)

where

$$A = A(x^j, \dot{x}^j, t)$$

(2.5')

$$H = H(x^j, \dot{x}^j, \frac{\partial A}{\partial x^j}, \dot{x}^j)$$

(2.5'')

The system formed by eqs. (2.4) and (2.4') is a Routhian System⁶, equivalent to the standard Lagrangian or Hamiltonian formulations of dynamics. But the dynamics description contained in eqs. (2.7), (2.4') is of a different nature. This is a direct consequence of the boundary condition, eq. (2.5), which destroys the symmetry of the global dynamics. The constraint, eq. (2.5), makes it possible to vary arbitrarily only the internal coordinates, i.e., take as arbitrary only the quantities λ_{x^j}. This allow us to interpret the Lagrangian behavior represented in eq. (2.4') as a boundary dynamics which influences the internal motion, described in eq. (2.7), which is a Hamilton-Jacobi-like parametrized equation. The system of eqs. (2.4'), (2.7) represents a Lagrangian picture whose configuration space is the cartesian product of the parametric and internal configuration spaces.

3. QUANTUM ACTION FOR PARAMETRIZED DYNAMICS

As it is well known⁸,⁹, the non-relativistic quantum fundamental equation, may be obtained from a time dependent quantum variational principle

$$\delta A = 0$$

(3.1)

$$A = \int_{t_1}^{t_2} L(\psi, \dot{\psi}) dt$$

(3.2)
with
\[L(\psi, \bar{\psi}) = \langle \psi(t) | i\hbar \frac{\partial}{\partial t} - \hat{H} | \psi(t) \rangle \] \tag{3.3}

and where the bracket \(\langle | \rangle \) means an integration in the configuration space \(\{x^j\} \) of the quantum system. In this paper, we extend the quantum variational principle given by eqs. (3.1), (3.2), (3.3), for the case in which the Hamiltonian operator, \(\hat{H} \), has the parametric dependance
\[\hat{H} = \hat{H}^+ = \hat{H}(x^j, \hat{p}_j; x^J, \hat{x}^J) \] \tag{3.3'}

As we will see, in this situation, the resultant Euler-Lagrange equations describe a quantum Hamiltonian dynamics embedded in a Lagrangian bath \(\{x^j, x'^j\} \), with whom it interacts. In this bath, the quantum system is supposed to be pointlike, in the of first order variations \(\Delta x^J \).

Then, inserting eqs. (3.3) and (3.3') into eq. (3.2), we obtain
\[A = \int_{t_1}^{t_2} dt \frac{d^3 x^J}{d^3 x'^J} - (x'^J, x^j, \dot{x}^j) | i\hbar \frac{\partial}{\partial t} - \hat{H}(x^j, \hat{p}_j; x^J, \hat{x}^J) | \psi \] \tag{3.4}

with
\[\hat{p}_j = -i\hbar \frac{\partial}{\partial x^j} \] \tag{3.4'}

where \(\bar{\psi} \) is the adjoint of \(\psi \), and \(d^3 x^J \) is the volume element in the configuration space \(\{x^J\} \). Now, as in the classical action, eq. (2.3) we consider two independent types of variations, \(\delta_a \) and \(\delta_b \), for eq. (3.4)

a) \(\delta_a \psi = 0; \delta_a x^j = \delta_a \hat{p} = 0 \), with \(\delta_a \bar{\psi} \) arbitrary and also \(\delta_a t = 0 \). With this and imposing the condition \(\delta_a A = 0 \), in eq. (3.4), we obtain
\[(i\hbar \frac{\partial}{\partial t} - \hat{H}(x^j, \hat{p}_j; x^J, \hat{x}^J) \psi(x^j, \dot{x}^j, x^J, \dot{x}^J, t) = 0 \] \tag{3.5}

the corresponding equations for \(\bar{\psi} \) are easily obtained.

b) \(\delta_b \bar{\psi} = \delta_b \psi = \delta_b x^j = \delta_b \hat{p} = 0 \), with \(\delta_b \bar{x}^J \) arbitrary, but \(\delta_b x^J(t_1) = \delta_b x^J(t_2) = 0 \). Here, we consider \(\delta_b \hat{p} \neq 0 \), induced by the variations \(\delta_b x^J \).

With these variational conditions we obtain from the variations \(\delta_b A = 0 \) that
\[
\int_{t_1}^{t_2} dt \frac{d^3 x^J}{dt^3} \bar{\psi} (\delta_b \hat{H}) \psi = 0 \tag{3.6}
\]

As

\[
\delta_b \hat{H} = \sum_j \frac{\partial \hat{H}}{\partial x^J} \delta_b x^J + \sum_j \frac{\partial \hat{H}}{\partial x^J} \delta_b x^J
\tag{3.7}
\]

we obtain

\[
0 = \int_{t_1}^{t_2} dt \frac{d^3 x^J}{dt^3} \bar{\psi} \left[\sum_j \left(\frac{\partial \hat{H}}{\partial x^J} - \frac{d}{dt} \frac{\partial \hat{H}}{\partial x^J} \right) \right] \psi \delta_b x^J
\]

\[
+ \left[\sum_j \delta_b x^J \int_{t_1}^{t_2} dt \frac{d^3 x^J}{dt^3} \bar{\psi} \frac{\partial \hat{H}}{\partial x^J} \psi \right]_{t_1}^{t_2}
\tag{3.8}
\]

The boundary term in eq. (3.8) vanishes, and from the restrictions which define the \(\delta_b \) variations, we have

\[
\int_{t_1}^{t_2} dt \sum_j \delta_b x^J \left[\frac{\partial}{\partial x^J} - \frac{d}{dt} \left(\frac{\partial}{\partial x^J} \right) \right] \int \bar{\psi} (\hat{H}) \psi \frac{d^3 x^J}{dt^3} = 0
\tag{3.9}
\]

Since the variations \(\delta_b x^J \) are arbitrary in the open interval \((t_2, t_1) \) it follows that

\[
\left[\frac{\partial}{\partial x^J} - \frac{d}{dt} \left(\frac{\partial}{\partial x^J} \right) \right] \langle \psi | \hat{H} | \psi \rangle = 0 \tag{3.10}
\]

with

\[
\langle \psi | \hat{H} | \psi \rangle = \int d^3 x^J \bar{\psi} \hat{H} \psi \tag{3.11}
\]

The coupled variational equations, deduced from the generalized quantum action \(\text{In eq. (3.4) with the aid of } \delta_a \text{ and } \delta_b \text{ variations, are} \)

\[
\mathcal{L} \frac{\partial}{\partial t} \psi = \hat{H} \psi
\]

\[
\left[\frac{\partial}{\partial x^J} - \frac{d}{dt} \left(\frac{\partial}{\partial x^J} \right) \right] \langle \psi | \hat{H} | \psi \rangle = 0 \tag{3.12}
\]
where
\[\hat{H} = \hat{H}(x^J, \dot{x}^J, \dot{x}^J) \]
and
\[\psi = \psi(x^J, \dot{x}^J, \dot{x}^J; t) \]

As a consequence of the \(\delta_{B_j} \) variations properties, the boundary term in of (3.8) may be written in the form
\[\left[\sum_J \delta_{B_j} \phi^J \left\langle \psi | \frac{\partial \hat{H}}{\partial x^J} | \psi \right\rangle \right]_{t_1}^{t_2} = \left[\sum_J \delta_{B_j} \phi^J \left\langle \psi | \hat{H} | \psi \right\rangle \right]_{t_1}^{t_2} \] (3.13)

From the form of eq. (3.13), we define the canonical momentum conjugate to \(x^J \), as
\[p_J = \frac{\partial}{\partial \dot{x}^J} \left\langle \psi | \hat{H} | \psi \right\rangle \] (3.14)

It is important to remark that eq. (3.10) is a Lagrangian equations in which \(\left\langle \psi | \hat{H} | \psi \right\rangle \) plays the role of the classical Lagrangian. This aspect is unusual in the literature of the semi-classical model. Liran, in the treatment of nuclear collective processes by the Cranking non-adiabatic model, arbitrarily postulates an additional Lagrangian system of equations which allows to calculate the coupling between the classical, collective dynamics with the internal quantum dynamics. But Liran takes \(\left\langle \psi | \hat{H} | \psi \right\rangle \) as the classical Hamiltonian and from it he constructs, in the usual way, the classical Lagrangian.

4. THE c-NUMBER HAMILTONIAN

In this section we obtain the classical Hamiltonian, which is associated with \(\left\langle \psi | \hat{H} | \psi \right\rangle \) by a Legendre transformation. For this purpose, we multiply eq. (3.10) and summing over \(J \), we obtain
\[\sum_J \left\{ \dot{x}^J \frac{\partial}{\partial x^J} \left\langle \psi | \hat{H} | \psi \right\rangle + \dot{x}^J \frac{\partial}{\partial x^J} \left\langle \psi | \hat{H} | \psi \right\rangle - \frac{d}{dt} \left(\dot{x}^J \frac{\partial}{\partial x^J} \left\langle \psi | \hat{H} | \psi \right\rangle \right) \right\} = 0 \] (4.1)
but
\[\frac{d}{dt} \left\langle \psi | \hat{H} | \psi \right\rangle = \sum_J \left(\dot{x}^J \frac{\partial}{\partial x^J} \left\langle \psi | \hat{H} | \psi \right\rangle + \dot{x}^J \frac{\partial}{\partial x^J} \left\langle \psi | \hat{H} | \psi \right\rangle \right) \] (4.2)

Hence, from eqs. (4.1) and (4.2) we have
\[
\frac{d}{dt} \left(\sum_j x^J_j \frac{\partial}{\partial x^J_j} \langle \psi | \hat{H} | \psi \rangle - \langle \psi | \hat{H} | \psi \rangle \right) = 0 = \frac{d}{dt} \left(\sum_j x^J_j p^J_j - \langle \psi | \hat{H} | \psi \rangle \right)
\] (4.3)

The \(c\)-number Hamiltonian \(H\) is

\[
H = \sum_j x^J_j p^J_j - \langle \psi | \hat{H} | \psi \rangle
\] (4.4)

It is now easy, to obtain the Hamilton equations defined by \(H\), namely

\[
p^J_j = -\frac{\partial H}{\partial x^J_j}
\]

\[
x^J_j = \frac{\partial H}{\partial p^J_j}
\] (4.5)

5. THE CLASSICAL APPROXIMATION TO EQ. (3.12)

Let us represented \(\psi\) given in eq. (3.4), as

\[
\psi(\omega^J; x^J, \omega^J, t) = e^{\frac{i}{\hbar} \mathcal{S}} = e^{\frac{i}{\hbar}(\mathcal{S}_0 + \frac{\hbar}{i} \mathcal{S}_1 + \frac{\hbar^2}{i^2} \mathcal{S}_2 + \ldots)}
\] (5.1)

where

\[
\mathcal{S} = \mathcal{S}(\omega^J; x^J, \omega^J, t)
\]

\(\mathcal{S}_0\) is supposed to be real and \(\mathcal{S}\) is an scalar by regular coordinate transformations of the \(\{x^J\}\). Generalizing Pauli \(\ast\) and Stachel \(\ast\), we may rewrite eq. (5.1) as

\[
\psi(\omega^J; x^J, \omega^J, t) = e^{\frac{i}{\hbar} \mathcal{S}_0} [R_0 + \frac{\hbar}{i} R_1 + \frac{\hbar^2}{i^2} R_2 + \ldots]
\] (5.2)

where \(R_0\) is necessarily not real. If we substitute eq. (5.1) into (3.4), in the approximation where \(R\) coincides with \(R_0\), we obtain

\[
A(R=R_0) = A_0 = \int_{t_1}^{t_2} d^3 \omega^J e^{-\frac{i}{\hbar} \mathcal{S}_0} R_0^* [\frac{\hbar}{i} \frac{\partial}{\partial \omega^J} - \hat{H}] R e^{\frac{i}{\hbar} \mathcal{S}_0}
\] (5.3)

If we consider variations \(\delta_1\), restricted by the conditions

\[
\delta_1 R_0 = \delta_1 \mathcal{S}_0 = \delta_1 x^J = \delta_1 \hat{H} = \delta_1 \omega^J = 0
\]
\[\delta, t = 0, \text{ but } \delta, R_0^* \text{ arbitrary, we obtain with } \delta, A_0 = 0 \]

\[\int_{t_1}^{t_2} \frac{d^3 x^J}{dt^3} dt \delta, R_0^* e^{i \frac{\pi}{\hbar} S_0 \left[\frac{\delta S_0}{\delta t} - \hat{H} \right] R_0 e^{i \hbar S_0}} = 0 \quad (5.4) \]

The term \(\frac{\partial R_0^*}{\partial x^J} \) has been neglected because it is of order \(h \).

Developing \(\hat{H} \) as a power series in \((-i \hbar \frac{\partial}{\partial x^J}) \); with normal ordering, we obtain for the zero order term

\[\hat{H}(x^J, -i \hbar \frac{\partial}{\partial x^J}; x^J, x^J) R_0 e^{i \frac{\pi}{\hbar} S_0} = e^{i \hbar S_0} H(x^J, \frac{\partial S_0}{\partial x^J}; x^J, x^J) R_0. \quad (5.5) \]

Inserting eq. (5.5) into (5.4), we have

\[\int_{t_1}^{t_2} \frac{d^3 x^J}{dt^3} dt \delta, R_0^* \left[\frac{\partial S_0}{\partial t} + H(x^J, \frac{\partial S_0}{\partial x^J}, x^J, x^J) \right] R_0 = 0 \quad (5.6) \]

Keeping \(R_0 \neq 0 \) and \(\delta, R_0^* \) arbitrary, we obtain the zero order variational equation

\[\frac{\partial S_0}{\partial t} + H(x^J, \frac{\partial S_0}{\partial x^J}, x^J, x^J) = 0 \quad (5.7) \]

This is a Hamilton–Jacobi like equation for dynamics endowed with an action \(S_0 \), parametrized with \(x^J \) and \(x^J \).

Now, let us consider \(\delta, \) variations, subject to the following conditions

\[\delta, R_0^* = \delta, R_0 = \delta, S_0 = \delta, t = 0 \]

\[\delta, x^J \text{ arbitrary, except in the boundaries:} \]

\[\delta, x^J(t_1) = \delta, x^J(t_2) = 0 \]

Hence, if \(\delta, \hat{H} \neq 0 \), then \(\delta, A_0 = 0 \), implies in that

\[\delta, A_0 = 0 = \int_{t_1}^{t_2} dt \frac{d^3 x^J}{dt^3} R_0^* e^{i \frac{\pi}{\hbar} S_0 \left[-\delta, \hat{H} \right] R_0 e^{i \hbar S_0}} \quad (5.8) \]

If we admit that \(\delta, \)–like variations commute with \(R_0, R_0^*, S_0 \) and \(x^J \), we can write
\[O = \int_{t_1}^{t_2} dt \sum J \left\{ \frac{3}{\partial x^J} \langle \psi | \hat{H} | \psi \rangle - \frac{d}{dt} \frac{\partial}{\partial x^J} \langle \psi | \hat{H} | \psi \rangle \right\} \]
\[+ \left[\sum J \left(\frac{3}{\partial x^J} \langle \psi | \hat{H} | \psi \rangle \right) \right]_{t_1}^{t_2} \tag{5.9} \]

where
\[|\psi\rangle = R_0 e^{iS_0} \]

The boundary term in eq. (5.9) vanishes, but from it, we can derive the canonical momentum \(p^J \). The arbitrariness of the variations \(\delta x^J \), in eq. (5.9) generate variational equations, which are of the Euler-Lagrange type
\[\frac{3}{\partial x^J} \langle \psi | \hat{H} | \psi \rangle - \frac{d}{dt} \frac{\partial}{\partial x^J} \langle \psi | \hat{H} | \psi \rangle = 0 \tag{5.10} \]

Eqs. (5.10) and (5.7), show that in the zero order approximation, \(\mathcal{H}^0 \), the system in eq. (3.12) is equivalent to the equations obtained from a classical action principle, where \(S_0 \) is the action and the Lagrangian is \(\langle \psi | \hat{H} | \psi \rangle \), with
\[|\psi\rangle = R_0 e^{iS_0} \]

With this correspondence, eqs. (5.10) and (5.7) are equivalent to the system formed by eqs. (2.4') and (2.7).

6. CONCLUSIONS

The dynamics generated by Hamiltonian operators, which depend on c-number parameters and its time derivative, describe, necessarily, a c-number dynamics interacting with a q-number one. The equations (3.12), have a dynamical structure which exhibits clearly this aspect, and its variational origin suggests that they may provide a natural candidate to representation for this semi-classical coupling. A very interesting and open problem to be studied is the semi-classical system with incomplete quantum information. This will lead, naturally, to the coupling between an statistical quantum dynamics and a c-number dynamics. Work in this issue is in progress.
REFERENCES

Resumo

Generaliza-se o princípio variacional quântico, dependente do tempo, para o caso de operadores Hamiltonianos contendo parâmetros reais e suas derivadas temporais. O sistema variacional obtido é constituído de uma equação de Schrödinger acoplada a um sistema de equações de Lagrange, onde a Lagrangeana é o valor médio do operador Hamiltoniano parametrizado. A dinâmica consequente do princípio variacional, descreve a interação entre uma sub-dinâmica q-number com uma subdinâmica c-number. Na aproximação WKB de ordem \hbar, o sistema variacional reduz-se a uma equação do tipo Hamilton-Jacobi, acoplada a uma família de equações de Lagrange. As características formais do sistema variacional obtido são apropriadas para a descrição de interações q-number - c-number, adiabáticas e não adiabáticas, dependentes do tempo.