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Abstract The metric and potential for a cosmological solution of the
equations for the gravitational and electrical fields arededuced from
a non-minimal coupled lagrangean in the vacuum, ultra-relativistic and
dust filled Universe. The stability of the solution is also investi-
gated.

1. INTRODUCTION

In the study of the modalities of non-minimal coupling between
gravity and electromagnetism, Novello and Salim' have deduced the field

equations from the lagrangean
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By variation of gu\) in (1}, one gets the equations
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with notation defined at the end of this article.

By variation of Au in eq. (1), one gets

Y, = AL YU ’%" s (3)
where J" is thecurrent term, derived from thematter part of the
lagrangean.

The system of equations (2) and (3) may be solved in many
specific situations and the most interesting may be the cosmological
one, seeking the possibility to detect anisotropies in the Universe.

In general, the search for alternative equations toEinstein's
equations for the gravitational field and other fields coupledwiththe

latter comes in response to the necessity to avoid the presenceofthe



initial cosmological singularity predicted by Hawking and Penrose's
theorems?, based on the validity of Einstein's equations.

In this study the author presents an exact and stablesolution
to the system of equations (2) and (3) for the anisotropic cosmological

case.

2. FORMULATION OF THE COSMOLOGICAL EQUATION

The Universe will be considered fliled with a fluid described

by the momentum-energy tensor

Ty = (-cl’, + OV T, - -c% v (4)

whose trace is T = p - 3p/e’.
In the Universe as a whole one can consider that, despite lo-
cal fluctuations, the electromagnetic field vanishes, so that
FW =0 (6)
whence

B, =0 (7)

Supposing M= 0, eq. (3) yields

RE=0 (8)
Taking the trace of eq. (2), one gets
R+ 3x[]4% = -2—72@ T (9)
which, according to eq. (8), reads
Al ]a? = 86, (10)
3e®
Defining
Q=1+ M° (1)
eg. (2) becomes
8nG 1
) Q =-22 -—
RW + [l v pe (TW 3Tgu\)) (12)

Using the relations (4) and (5), eq.(12) becomes
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with the condition, derived from eq. (10)
Oa = 816 4 (14)

3c?

In this paper the author intends to solve the system of eqgs.

(13) and (14) for the anisotropic cosmic geometry.

3. THE ANISOTROPIC METRIC

Tlie simplest metric for a Universe in which theexpansionrate

changes with the dlrection is3

ds? = c2dt? - A%(et)dx? - B%(ct)dy® - C?(ct)ds? (15)

In rectangular comoving coordinates.
The non zero components of the Ricci curvature tensor, for

thls metric:, are

o A, B C
R' =7+3+% (16.a)
1 .-_‘;i é _é.. é ;
RI_A+A[B+C] (16ub)
e B, Bfd, ¢
Rz'B+B[A+CJ (16.c)
and " . . .
3 _C_ Cl4A_ B
Ra-?-i-?{z*'?] (]6.d)
The covarlant derlvatives of @ become
o -3 (17.a)
[0
|1 _AQ
R Ey (17.0)
IZ =.B_sz
Q ”2 B (]7.C)
and | .o
[5:9]
i, =2 .
I 7 (17 .d)
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Since in comoving coordinates ™ = 6110’ egs. (13) and (14), in

the metric of eq.{(15), become

4 B ¢ & 86 [2 J&J
— 4+ =+ =+ = - — |50 + (]8-8)
ZTEYTT R o2 B o2
i i [B ¢ Q) g6
—_— 4 - e o] (]8.b)
AT T BTTTR 3
B B {/i ¢ Q} 811G
4 = S = = = o] (]S.C)
BT B ATTTR T 5
¢ ¢ (ﬁ B Q] 816
+ % L+ 5+x = o (18.d)
YT @ZretQ 3070
a 8 [.5 B C] 8nG [1 p]
+ = |FHE+ 5 =— |xp - (18.e)
ot W'BETT T, 377 2 ’
Defining
IR R
XEL,¥YS5,035,0E
(19)
= 876, 4= B = P
k = cz, Q= Q and P CZQ
egs. (18) become
}?+5’+2+W+X2+Y2+Z2+Wz=k(—%Q—P) (20.a)
T+Xx X +Y+2+W =ko/3 (20.b)
Y+Y (X +Y+2+W =kg/3 (20.¢)
Z2+Z2 X +Y+2+ W) =kgs3 (26.d)
P.J+W(X+Y+Z+W)=k(—;—Q—P) ' (20.e)

This set of five equations in the six unknowns X, Y, Z, W Q
and P requires a sixth equation for a unique solution, which is just

the ''state equation™ obeyed by the cosmological fluid

p = p(P) or P = P(q) (21)
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4. ANISOTROPIC CASE IN VACUUM

If p=p =0 then P=Q =0 and from eqs (20) one concludes

4
that
¥ ¥ _Zz_w
— I e T2 e o = 22
=555 X+Y+2+W (22)
Therefore, one can wrlte X, Y and Z as
X=&8W, Y=n¥V and Z =W (23)
Then, eq. (20.e) becomes
W= -KW? (24)
where
K=E4+n+0C+1 (25)
The solutlon of eq. (24) is
: (26)
Kt+C
Hence X, ¥, and Z are given by
X = 3 , I= ! , &= S (27)
Kt+C Kt+C Kt+C
Carryingtheseresults intoeqs. (19) and integrating, one
gets
o- /& (28.2)
0
4= (28.b)
0
B= Gk (28.c)
0
c= GHE (28.d)

0

where the integration constants are incorporated as a trans-
lation in the time axis.
Identifying the parameters

- £ =N =z = 1
a:—K-, 627{-, 'Y-—T(‘ andw—i (29)

one sees that
a+B+yY+w=1 (30)
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Moreover, taking relations (23) into eq. {(20.a), with Q=P=0,
and taklng tnto account eq. (24), one sees that

a2+ g2t y2t+y?=1 (31

The solution of the non-minimal ocupling equations in the

anlsotropic cosmological case for the vacuum is, therefore, the metric

de” = o?ar? - (D% ax? - (B @? - (DY ds? (32)
0 0 0
together with the four-potential given by
R =1+m2= ()" (33)
where a, B, y and w obey the relations (30) and (31).

The volume in this Universe is given by

j” Vdet gijl dedyds

o [ e [ o

0

<
1]

The rate of change in the voiurne is then

S s (35)
(t/to)

<i<qe

5

The solution (32) is similar to the Kasner® solution in which

the conditions (30) and (31) are merely
a+6+y=(12+82+’Y2=] (36)

. . 6 .

Belinsky and Khalatnikov ~have shown that this case can be
thought of as a Kasner solution for Einstein's theory in a five-dimen-
tional empty space, the factor Q(¢) playing a role of the expansion

factor of the flfth dimention.

5. STUDY OF THE STABILITY OF THE SOLUTION

The system of equations (20), in the case Q = P = 0, is an
autonomous systern in four dimensions, with the first of them justplay-

ing a role of a constraint, slnce one can write it, taking the others

into account, as
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XY +xz+xw+yz+YW+zw=0 (37)

Taking X as representative of the spatial variables, one can
exbihit the: possible solutions of the system in a two-dimentional dia-
gram. As seen in Fig.l, the solutlons are straight lines passing bythe

orlgln as one can see from egs. (23).
X

K>0

K<0

+ 00— 1 - W

MINKOWSKI

',

figthe-c&smporo@cal 0solutions

The origin is a singular point of the system, that is, in the
origin, dX/dwW is indeterminated, since X = F.J= 0. It represents the
values of X and Wwhen the parameter t tends to +e. Thus the origin
is a stellar node’ of the system. The system will be stable If the
lines tend to the origin for increasing values of t, and will be un-
stable otherwise.

As. can be seen from Fig,1, the system is stable.

A particular interestlng case Is the one where A = B = G that

is the Friedmann isotropic Unfverse, In this case, egs. (30) and (31),

give
30 + w =1
302 + w2 = 1 (38)
The solution of thls system is either
a=0 ,w=1 (39)
or
a=1/2 , w=-1/2 (40)



The case of eq. (39) corresponds to the Minkowski space and eq.

(40) corresponds to the Friedmann space, that is, respectively to the

metrlcs
ds? = c?dt? - dz® - dy? - dz? (41)
and
ds? = crdt? - (D)7 (dx? + dy? + ds?) (42)
0
wlith the respective potentials
Q=1+ M= () (43)
and .
2
R=1+Mm2= () (44)
0

Note that the Friedmann metric (42) corresponds toan euclidean
spatial section.

in terms of X, Y, Z and W, one has

Minkowskl case X =Y=Z2=0 (45)
W= I/t

1/2¢ (46)

Friedmann case X=Y=12
W= " 1/2¢

6. THE CASE OF ULTRA-RELATIVISTIC PARTICLES

If, instead of p = 0 = 0, one has

2,
p=32 o P= (47)

WD

which means that i f the Universe is filled with an Ultra-relativistlc par-
ticle gas (neutrinos, for example), besides the non-linear- photons

originated from the non-minimal coupling, then the set of egs. (20)

becomes
T+ T +2+m+x+Y +22 45 =kQ (48. a)
Y+ XX+ 7+ 2+ W =kq/3 (48.b)
T+ YX+Y+2Z+W =kg/3 (48.c)
Lvz(X+Y+Z+W) =kqs3 (48.d)
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W+ WX +Y+2Z+ W) =0 (48.e)

If one tries a solution like egs. (26) and (27) one sees that
thls Implies Q = 0.
On the other hand, eqgs. (48) yleld

X kg Y _ kK _Z_K_FV_y yiz4w (49)

which gives the set

ep_ iod_bod
YY" Y-z~ 7-% (50)

=f =

From eq. (50) one concludes that

oW =X-Y BW=Y-2 and YW=12-X (51)

with
o+ B+Y=0 (52)

It Is possible to choose the solution

X=y=2 and W=0 (53)

Then eqgs. (48.a) and (48.b) yield

3% + 3%2 = - kg (54.a)
X+ 3%% = kq/3 (54.b)
which lead to
X = - 2x* (55)
whose solutlon is
X=——=y=g (56)
2t + C

Then one has, according to equation (54.b)

g = —32— (57)
(2t + C)2
The result (56) yields a Friedmann-like metric just as eq. (42),
with the same tlIme-dependence, But now there is not a time-dependent
electric potential because once W=0, then Q=14)2=constant. The energy
denslty and ultra-relativistic particle gas pressure, however, obey a

-2 .
t time-dependence.
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With regard to the stability one can see that the system (48)
is alsoanautonomous systemwltheq. (48.a) palying the role of a
constralnt. Once again the orlgin is a '"'stable stellar node" of the

system.

7. THE DUST-FILLED UNIVERSE
In the case of a dust-filled universe one has
p =P=0 (58)

and the set of eqgs. (20) becomes

T+ T+ 2+W+x%+7%+2%+ W = - 2kq/3 (59.a)
T+ XX +Y+2+W =k/3 (59.b)
Y+ YX+Y+2Z+W =k/3 (59.¢)
Z+2(X+Y+ 2+ W =ko/3 (59.d)
W+ WX +Y+2+W =k/3 (59.e)

Once again the Kasner-like solution yields the vanishing of Q
and then of p.
Assuming again that

X=E8W, Y=nWwW and Z = QW (23)
eq.(59.e) is written
W+ KW = kg/3 (60)
where
K=E+n+0¢+1 (25)

But if one takes eq.(23) into egs. (59b, c, d) one sees that
E=mn=¢=1 (61)

Consequently X = 4 and eq. (60) reads
Wt ot = ke/3 (62)

Equation (59.a) then becornes
K+ b = - 2kQ/3 (63)
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Egs. (62) and (63) together give

Wt 2w =0 (64)
whose solution is
W=F_}_—C=X=Y=Z (65)
Carrylng thls result into eq.(62), one obtalns
Q= —>— (66)

(2t + )2
Orice again the result {s a Friedmann-like Universe, now wlith
an electric potential with the same time-dependence as the metric.
The same considerations made in the previous case In regard

to stability should be also made here.

8. SUMMARY AND CONCLUSIONS

The three possibilities considered for the equation of state

furnished the following results.

iYp=0p=20
ds? = ot - (5 2wt - (D @t - (BT e
and o 6 te
2 _ b\
1 + M*° = (t_o)
with

o+ B+y+w=0a®+p82+y:+ =1

Particular cases are

Friedmann: a=Bf=v=1/2
w=-1/2
and
Minkowski: a=B=vy=0
w =]
2 -2
i) p= ’3—3‘3 <t
2 2.2 t,1/2
ds® = e*dt® - (-t-o-) (de® + dy? - dz?)
and

1 + M? = constant.



iii)yp=0 p « ¢t ?°

ds? = c*ar® - ()" (@ + ay? + az?)
and 0

1 = (52
Z

As demonstrated before, the presence of an energetical or ma-
terial content in the Universe, besides the non-linear photons, removes
the anisotropy which may be present in the vacuum case.

A possibility for the history of the Universe in this non
-minimal coupling mode! is that in the primeval era the anisotropy
arises but subsequently, in the radiation era, the energy content leads
to isotropy which is actually present in the matter era. The radiation
(neutrino) and the matter may have arisen from the fluctuations of the
primeval vacuum, carrying a matter-antimatter pair formation. As we

have shown, the solutions are stable.

The author would like to aknowledge Dr. M. Novello, frorn

CBPF, for supervising the thesis which led to the development of this

paper.
NOTATION
Au = (¢,Z) - four-vector potential
E =1 ( a F% + 11*- Fag o8 g ) - momentum energy tensor of the
WV ez M uv .
electromagnetic field

- _ .

Fu\) Aul\) -2 electromagnetic tensor

v|u
G - gravitational constant

1 . .
G =R _~-—Rg - Einstein tensor
uv w2 "y
g = det (gm))
Iy ~ metric tensor



u ¥ .
J 3 (cp,J) - current density four-vector
p - lsotropic pressure

Rot o " o - Riemann curvature

=T -0 o pt oL
ney gnly m(|B +T TYF Bn r T8 Yn  tensor

R =R - Ricci tensor
uw Hov
R= gu\)R - curvature scalar
uv
- 2 GLmatter

T = - momentum energy tensor of the matter
ooy s
ev-g guV

p - charge density

| le =g Vq)\ I - d'Alembertian operator
fi.= af\) - partial derivative

AP

] . H _ . . .
%4 [Ia = \ B + T >\KVK covariant derivative
+ _ 0 . . .

Zat time derivative
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Resumo

Sao apresentados a métricae o potencial para uma solugdo cosmo-
logica das equagoes dos campos gravitacional e eletromagnético deduzi-
dos de uma lagrangeana com acoplamento nao minimo para o vacuo, um Uni-
verso com particulas ultra-relativisticas e com poeira. A estabilidade
da solucdo é também investigada.
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