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The variational application of the group of transformationsis
analysed for the three following cases: translations, deformations and
rotations. The parameters introduced within these transformations are
determined via hypervirial theorems. The method proposed is applied to
several anharmonic oscillators and results are compared with previous
exact values.

A aplicagao variacional do grupo de transformacées € analisa-
da para os trés seguintes casos: translacgoes, deformagbes e rotagdes.
0s parametros introduzidos nessas transforma¢des sdo determinados via
teoremas hiperviriais. 0 método proposto é aplicado a varios oscilado-
res anarmoni€os e os resultados sdo comparados a valores exatos conhe-

cidos.

1. INTRODUCTION

Variational determination of an approximate wavefunction for
a physical system requires the insertion of a set of adjustable para-
meters (linear or not). Then, optimum values for them are calculated
by utilizing extremum conditions for the energy functional. The evolu-
tion of the wavefunction in terms of such parameters has been previous-
ly studied within the forrnalism of unitary operators! and by way of the
analysis of induced transformationz-a. Under certain conditions, the
introduction of a variational parameter constitutes a sufficient andne~
cessary condition in order that a diagonal hypervirial theorem being

satisfied. The relationship between corresponding hypervirial associ-
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ated operators was set forth in both cases. Hirschfelder et aZ?”® have

discussed the coordinate transformations

x + olx,a)

with the specification

o{x,0) = x

for rectilinear as well as for curvilinear coordinates, and where a is
a variational parameter. However, this class of transformations have
not been analysed and applied intensively from an unified point ofview,

as far as we know.

The purpose of this communication is to analyse indepth such
methodology via the group of transformations. As we will see later, it
will carry us to a variational method which is associated to those

groups in the following sense.

If G is a group of transformations and X is a set of varia-

bles, then

o(a,X) = A(@)X Y4 € G

a being a set of variational parameters. W shall study three kind of
transformations: rotations, deformations and translations. The later
was utilized by Hurley for diatomic molecules. The plan of the paper

is as follows.

In Section 2 the group of transformations are studied, and
the most relevant results are given in connection with their subsequent
application within the variational method. Unitary operators related
to the transformations are analysed in Section 3. The proposed varia-

tional methods developed in Section 4.

Finally, some numerical applications are shown in Section 5
for coupled oscillators and anharmonic oscillators. Results obtained
are compared with other numerical values, which are calculated from
more elaborated methods. The effects of the transformations in the
symmetry of the zero-order wavefunction are discussed too in this Sec=-

tion.
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2. GROUP DE TRANSFORMATIONS

2.1. Orthogonal Groyps

Ve denote with 0(n) the group of matrices in e which have

the property of being orthogonal. Then, 0(n) C F*" and
¥ +
¢ €0(n) —-cc= cc =1 (1)

det C = %] (2)

Rotations constitute a subgroup of 0(n). W designate such group with

R(n), whose elements satisfy the condition
C€ R(n) —> det C = +1

The number of independent coefficients in a matrix of O(n) is equal to

n(n-1)}/2 = s. W denote with 8 = (61,92,...,98) the set of such para-

meters. From Eq. (1) we can immediately deduce that if Ai = (BC/Bei)CT,
then
aC :
m—=4,C:; 1 =1,2,...,s
T, 1Erve (3)
7
t_
where A, = - 4..
7 7

2.2. Group of Pure Deformations

A pure deformation in Rn is defined by a diagonal matrix of

n=(ni6ij) ;N> 0 3 £=1,2,...,n (4)

We denote this group with D(n).
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23 Central Affinity

A central affinity T is defined as a composition between a

pure deformation and a orthogonal transformation, i.e

T=nC (5)

where

n€& D) and C € 0(n)

The linear transformation t defines a change of variables onto the co-

lumn vector of coordinates X, in the form
7
o=t ; X, 08 R (6)

it can be deduced at once the following properties for r:

ot = 2 )
J -1
corik T ®)
z ni .
9T _ _ ~1
36;_” AiC—nAiﬂ 1 (9)

Let Bi be the matrix defined by

T (10)
7
Then B, = —Bti., so Eq.(9) can be written in an alternative way by derj-
ving Eq. (7) with respect to 6,
3T =B.n21=B.7t¢c (n
397,. 7 7

Comparing Egs. (11) and (9), the following relationship between A, and
B. is obtained
%

A, =1 LB g7l (12)

148



The change of the new coordinate o with vari‘ational parameters

n = (nl,...,nn) is got from Eq. (6}

o 3T -2 -1
35 'a—e—iX = B’(: n c=mA.n a
7 ( 0
30 an -1 7z g
= e nt0g = |67/, = I
. . 1
anl an : 1 nt ne
0

Now we can analyse the Jacobian of the transformation and its

in the metric:

7 .
oxr” _ (T-l)’b
30 N

If (gii) is themetric tensor defined byX, and (géj) is the

tensor" defined by o, then

v oo=lvk =141 Y N R S _ 1 .-1 -1
;5= (W ()5 gy = Cpng Comy” gy = Cgy O30y 05

For X being a set of rectilinear coordinates, then gij =46.,

.7
(16) is simplified to

-1 =1
57:J- ni ﬂj

r
gij

which shows us that the metric is not affected by C.

8 and

(13)

effect

(14)

(15)

metric

(16)

so Eq.

a7

. 2x2 . . .
For example if T€R X , and C is a rotation by an angle a, we obtain

From Eq. (12)

(18)
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and, on account of

o= 1X (20)
then
n
- ;7_1_ oy
% =0 2 (21)
%o
n 1

As a second example for the transformation in spherical coordinates,we

have that if

1
X 1

tgd=— ; tgo' == (22)
@ o

then, the relation between ¢ and ¢' is

tg o' =n, ' tg (¢ + ) (23)
24. Group of Translations
Ve indicate the group of translations in B with T(&"). If
T € T(R"), then
T,X = X+a, with x, a6 R (24)
The Jacobian for this transformation is the identity, i.e
<
igo= 2= (25)
ax?
and, furthermore
o) d30”
J = —_— = I (26)
a ag?

2.5. Composition between a central affinity and a translation

For a composition between a central affinity and a transla-

tion, the resulting change of variables is
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= . . e . 7y . 0
Y=tl X voroioo pREM ; ¢ eo@EY ; T € (R (27)
Y =1t(x+a) (28)
The inverse transformation is

X = T;I(T_I.Y) =7tly-q (29)

3. UNITARY OPERATORS IN L?(R™) ASSOCIATED TO THE GROUP
OF TRANSFORMATIORIS

3.1. Operators associated to O(R™

Defining the operator UO as an application of the space of

functions f(X) of integrable square onto itself

Uy : 2R ———— 12(F)

U¥(x) = ¥(cx) ; ¥ € L2(R") ; X er': ceo@h

we can immediately that
j \y:(cx) ‘VZ(CX) dx = J \y:(x) wz(x) ax (2)

or, equivalently

so, the operator U defined by Eq (1) is unitary.
32 Opisrator associated to D(R™)

After the fashion of the previous definition, we now define

operator UD as
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U, : B*@®") ——— 12(7")

U(E) = (g )P vn) 5 v €128 x € BY n € D@

n

(3)

and this operator results unitary too.

3.3. Operators associatedto a central affinity

For the operator connected to a central affinity wehave that

U, ¥ = ()Y v (5)

where, obviously, U is unitary.

Previously defined operators satisfy the equalities

up ¥ = r(ctn (6)
Ug Y(X) = (nl,...,nn)-l/z ¥(n"'x) 7)
uE v = (ny,een )2 v (8)

3.4. Operators associated to T(R")

We define an operator UT associated to a translation by way

of a

UTa ¥Y(X) = ¥(X + a) = ‘P(Ta X) (9)

where

J ¥*(X+a) ¥(X+a) dX = 1 (10)

152



Then

-l- -
U =Up = UT1 (am)
a -a a
.?-
UTa ¥(X) = ¥(1-a) = ¥(T_X) (12)

4. VARIATIONAL METHOD

The present proposed method of application of scaling to a
trial wavefunction consists in regarding in a variational way the pa-
rameters 8, i, and a. Firstly let us take ¥(X)eL2(®") and to study
the central affinity for X rectilinear. The variational function is

U I = (g, v ()

with a = t¥ and t = nC. The energy functional is

E(7,8) = <v_ ¥(0)|H|y, ¥(x)> = < () |E]¥(x)> (2)

where
H=uvlwu, 3)
Fu@ = ol 8@ (... 0yt v = B ) ()
H(t"lx) = T(z71x) + V(t"1X) = T(8,n,%) + V(8,n,X) (5)

In this case the metric does not depend of 8, so does T too. Then
T = 7(n,X) (6)

or, equivalently

[T’UO] = 0 (7)

In this case
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3E(6,n) _

a6,
7

<W(X)[SV/BGZ.|‘!’(X)> ;T o=1,2,...,8 (8)

W proceed now to analyse hypervirial operators corresponding to each

class of parameter. Frorn Egq. (2.13) we can obtain such operators, be-

cause
U _¥(X) 7
T 1 g 3
= t oo ey U ‘l/(X) =
ani { 21’17; ﬂi BO'L T
i3 2 7,]7 )
LIS (e LGSR Sy U M) = 5 W U_¥(X) (9)
mi { A ad J T b T

where W”i is the sought operator. The extremum condition of the func-

tional £ with respect to U i.e

3E(8,n) _ s 1=1,2,...,m (10)

n.
1

2-3
leads us to the well known diagonal hypervirial theorem

<[H,Wn]> =0 ;%2 =1,2,...,n an
A

For the other set of parameters, we have

BUTW(X) 1
*797——= (nA,L.n 0) VO UT \V(X) H 1T = ],2,...,3 (12)

in this case, the hypervirial operators is given by

_ -1
W = (A7) oy Vo (13)
Z
where
VO =L e. B—r
7 J 507

The condition of extremurn of E with regard to 97: , i.e.

3E(6,n)

397: =0 ; 2=1,2,....,8 (14)

gives us
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<[V,We]> = 0 (15)
z
because
[TW, ] =0 (16)
z
Conserning translations we have that
Up ¥(X) = explla.p) ¥(X) = ¥(X+a) (17)
a
with
U, =expbap) , and U, =exp(<a.p) (18)
a a
The Hamiltonian operator transforms as
F=u' By, cF+V=04+7 (19)
T T
a a
where
r=ul py =7 (20)
T T
a a
owing to
[ru,1=1[rp] =0 : (21)
a

The depsndence of the energy functional with the vector associated to

translation is given by

Ela) = <¥(z x) |[B[¥(1 0)> = <¥(x) |d]¥(x)> (22)
vE = <¥(Xa)l [V,va] [¥(X,a)> = - <¥(X,a)v 7| ¥(x,a)> (23)
vE = <¥(x) lvaT;lw(Xb (24)

Then, the condition of extremum for E with respect to the translation

is expressed by the following equation
< (@) v 7|¥(x)> = 0 (25)
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As we can clearly see, translation as well as rotation have not effect
on the kinetic energy of the system and only influence the potential.
Farther on, we shall see that orthogonal transformations and transla-
tions enables us to "adjust™ trial wavefunctions so as to take into
account the symmetry of the potential. Deformations allow the fulfil-
ment of the virial theorem when the corresponding parameters are de-
termined in a way such that energy is stationary with respect to them.
In the present method we propose the minimization of the energy func-

tional with respect to the parameters associated to the transformation
Y=r’TaX =1(x ta)

so the total number of such parameters is n{n+3)/2. The unitary opera-

tor U in L2(R") is

U (26)

and hypervirial relations to be satisfied are those given by Egs.(11),
(15), and (25). W take as initial wavefunctions the eigenfunctions
{6, ()} of H, i.e

# ¢ (x) = ¢, (1) (27)

where the Hamiltonian operator H corresponding to the system under

study can be written
B=5+ 5

According to Bangudu and RobinsonS_7 we can determine which operators

are whose mean values are corrected up to the first order Let

S(i 3V, U, s o= (ena) (28)
a
If
(D) =T+ {e(B) - (T9)/¢} ’ (29)
then
<3h/3b7:> = de/3b; (30)
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is corrected up to the first order. In this case the operator & (b) is

totally determined by the choice made through Eq. (27). According toit
H9(0) ¢(0) = e(b) ¢(0)

and

h(b) = #%(a) (31)

5. APPLICATIONS
5.1. Uniidimensionalanharmonic oscillator

Let us analyse the unidimensional system whose Hamiltonian

operator is

=8 +n (1)
where
.
B =-2 4y x2; H'=v_z3 4+ z" (2)
dxz 2 3 L
Accorditig to Eq.(1) and the final discussion in Sec.4, initial wave-

functions are those corresponding to the unidimensional harmonic oscil-

lator. If PX is the inversion operator i.e
P fla) = £-a)
then
[HO,Px] =0 ; and P ¢0(x) =+ ¢0(x) (3)
Moreover
(ap]=[a"p] #0 (4)
and
<¢3(x) ]x3|¢g(x)> =0VYn (5)

0
Through the group of translations we can modify the symmetry of ¢n(ac)
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in order to circumvent the reai difficulty expressed in Eq.(5). Then,

we define the change of variables

c=mnc+b; n# 0 (6)
so that
x=n—lc+a;a=-b/n
and
0 =
UTb U, ¢n(x) ¢n(c) (7)
Furtherrnore
0 = 40 - 0
P, ¢n(0) = ¢n(n,b, x) # ¢n(n,b,x) (8)

Following the steps indicated in Sec.4, results of Table 1 are obtai-

ned. According to the final analysis in the previous Section

v, =v, =1, vy3=205
a b E0 El E,

0. 1. 1.75 ‘ 6.75 14.75
-0.082007 0.60499 1.38496

-0.10437 0.53008 L.6165

-0.10946 0.46827 8.5508

Uz = Ua = v“ =1

0. 1. s 6.5 14.75
-0.17556 0.62741 1.32501
-0.21558 0.54554 4.542150
-0.225487 0.47875 8.25097

Table 1 = Energy mean values for the first three states of the Unidi-
mensional Anharmonic Oscillator with Hamiltonian Operator H = - ——

+v 22 +v a3+ vt
2 3 y
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1

h(n,b) =2 7+ 02/2 =n2 7 + 7 (o + b)? (9)

3n/3b = mn + b (10)

which shows us that the introduction of the parameter b associated to
translation, allows the calculation of <x> corrected up to the first
order, as well as to obtain <z'*> {n odd). These results could not ha~
ve been obtained without the utilization of a translation (due to g

(5)).

5.2. Bidimensional bi-harmonic oscillator

Now, as a bidimensional example, we choose a model which has

been extensively studied® 4

BE=0%+H" ;8 =10 +n0 ;207,400 , 72=1,2 (11)
1 2 T A 1

0 - 2 . r = 2 3
v =, xi/Z i H A(xle + nxl ) (12)

Let 7 and P be inversion operators corresponding to coordinates x,
1 2

and X respectively, i.e
2

P f (xi.xg-) = f(-x,b-,xg-) ;2,d = 1,2 (13)
Then
@.p] =0, and [P,p5] =0 (14)
If
00 (e x) =40 (2,)90 (z,) (15)
nyan, 1772 n 1, 2
are eigenfunctions of g0, then
0 = o L.
Pi ¢n1,n2 = * ¢n1,n2 y 2=1,2 (16)

and, furthermore

@] = (B2 #0 5 [@.2] =0 5 [B,pPy] 20  (17)
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In such case, eigenfunctions of H only satisfy the equation

P = % 18
2¢n1,n2 ¢n1,n2 (18)
That being so, we must ‘break’’ the symmetry associated to Ty in close
analogy to the previous case. Then, we define the following coordina-

te transformation

, nl 0 b
o = UTb UpX = . X + : (19)
2
”;l 0 a
X = + (20)
{0 n21 (0

Making calculations as indicated in Section 4, results given in Table

2 are obtained. Besides

= n2 2 ! ! 2
h(ny,ny,0) =03 T) + 05 T, +5 (nz +b) +5 (my)® (21)

dh/3b = n @ +Db (22)
Then, the insertion of parameter b allows us to calculate non-zero
mean values of odd moments associated with x;, in a similar way as in
the previous model. Several results are presented in Table 2 for dif-

ferent choices of the parameters A, n, wy; and w,, which are compared

Present

A n w w? Ref . (9) |Ref.(10) Exact
! Method

-0.1116 | 0.08414 | 0.29375 |2.12581 | 0.9920 | 0.9925| 0.9928 | 0.9916
-0.1600 | 0.16000 | 0.49000 | 1.69000 | 0.9836 | 0.9846| 0.9853 | 0.9826
-0.2000 | 0.20000 | 0.49000 |1.69000 | 0.9667 | 0.9661 | 0.9690| 0.9621

Table 2 - Energy mean values for the ground state of the Bidimensio-

nal Bi-harmonic Oscillator with Hamiltonian operator H = = —2 +

2 d? 2 2 3 dy

tw zi/2 - Lt 23/2 + (xjx, + x)).
2
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with other approximated methods as well as with the exacts ones. As we
can see, a good agreement exists among different resuits. But we rnust
point out that from a computational point of view, our variational me-

thod is similar than the others.

5.3. Bidimensional anharmonic oscillator

In order to analyse the effect of orthogonal groups, let us
consider the model whose Hamiltonian operator is

B=4% + 5
with
1 1+ (‘”1
H0=--2-A+3X X,X=x] ',H’=on,ac1x2 (23)
("2
In this case
[#,p,] #0 ; [a,p,] #0 ; [,PP,] =0 (24)
and
<H'> = @ (25)

In order to obtain a change in the symmetry of the wavefunction, we

apply the following transforrnation

n 0 (cose -send }

1
J X (26)

4] n, lsene cos8

The application of extremum conditions gives us the following values

)1/l+

send = casb = — , n; =1, = (1 +a

which are precisely the exact results. Hypervirial operators associa-

ted to a rotation are, according to Eq. (3.13)
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Ay = %% ¢ = (27)
1 0
-1 ) -1 3 3 3
We=-n =t N, N0 e— == E et B e (28)
8 1 2 2 801 2 1 1 302 2 BF,I 1 Bgz
where
-1
t; =N %

This result was completely foreseen from analysis given in Section 3.
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