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The on-energy-shell-approximation is used for the channel
Green's function to solve the coupled channels equations for sub-
barrier multiple Coulomb excitations in heavy ion collisions. A set
of recursion relations is derived which permits a simple algebraic so-
lution for the S-matrix elements. The resulting excitation probabili-
ties satisfy the unitarity condition exactly. Cornparison of aur re-
sults with those of the exact quantum mechanical and semi- classical

treatments is made.

A aproximacdo ''‘on-energy-shell' foi usada para as funcées de
Green dos canais para resolver as equacbes acopladas de excitagcdes mul-
tiplas Coulombjanas para ifons pesados de baixas energias. Achou-se um

conjunto das equacdes de recorréncia que permite uma solugdo algébrica
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simples para os elementos da matriz-S. As probabilidades de excitacéo
resultantes, satisfazem exatamente a condi¢ao de unitariedade. Foram
feitas também comparagoes dos nossos resultados com os obtidos nos tra-

tamentos quanticos e semi-classico.

1. INTRODUCTION

In a previous paper1 (referred to as 1), we studied the con-
sequences, on the sub-barrier elastic scattering between heavy ions, of
using the on-energy-shell approximation for the channel Green's func-
tion in the solution of the coupled channels equations for multiple
Coulomb excitation. A simple expression was obtained for the Coulomb
polarization potential which was then used to calculated the sub-bar-
rier elastic cross section. Another method, the Born series summation ,
was also considered and it gave very close resuits for the elasticcross
section as the WKB approximation. By adjusting the Coulomb polarization
potential so that it reproduces, on the average, the Alder-Winther po-
tential we were able to account, to some extent, for the off-energy-shell
effects. The resulting adjusted potential, seems to describe well the
effect of multiple Coulomb excitation on the heavy ion sub-barrier elas-

tic scattering.

In the present paper we apply the method developed in | tothe
sub-barrier heavy ion inelastic scattering. This application is, in our
view, an important testing ground for any approximation schemes devised
to simplify the heavy ion coupled channels problem and should be consi-
dered in conjunction with the application to elastic scattering. Al-
though the semiclassical theory of multiple Coulomb excitation as used,
e.g., in the de Boer-Winther? code is adequate for not too many coupled
channels, the need for alternative approximation becomes apparent when
the number of the coupled channels increases. Several methods® have been
developed to calculate the inelastic cross sections for heavy ions in
the case of strong coupling. W mention in particular, the methods ba-
sed on the work of Miller which allows some feedback onto the trajec-
tory due to the coupling to the different excited states (channels).
However, these methods have been, so far, restricted to back-angle

scattering only. Our aim in this work is to solve the coupled-channels.
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Miltiple Coulomb excitation problem exactly within the on-energy- shell
approximation adopted for the channels' Green's function. This proce-
dure allows for the construction of the different inelastic amplitude
in a simple closed form and thus permits the introduction of improve-
ments in a simple way. The numerical evaluation of the amplitudes in-
volves only the inversion of finite matrices which was discussed in I.
Furthermore, the introduction of the nuclear effects, which becomes im-
portant at higher energies, is straightforward and will be discussed in
part 3 of this series. Although we do not expect our final results,
which are based on the OESA, to be very close to the exact coupled chan-
nels or de Boer-Winther results, we do believe, however, that such an
OESA procedure could serve as a reasonable starting point for a more
precise, yet simpler, calculation of the effects on the different heavy

ion processes due to strong coupling to many other channels.

Furthermore, as was discussed in |, the formalism we develop
allows for a very clear separation between reorientation effects and
coupling effects and thus allows for a simple exploratory study of the
change in the nature of the channeis, i.e., vibrational vs. rotational.
Although the energy loss associated with the different excitations pro-
cesses was accounted for in I, using the semiclassical energy loss fac~-
tors, in the present paper the energy loss is accounted for exactly,al-
beit semiclassically. After some preparatory developments in Section 2
we derive, in the OESA general expressions for the inelastic amplitu-
des which contain multiple Coulomb excitation effects to all orders. In
Section 3 we evaluate the sub-barrier inelastic cross sections for the
system “0Ar + 238U at E1ab
,pure rotational character. Comparison of our result at back angles with

= 240 MeV assuming for the excited states a
those obtained by Alder and Winther? are discussed. Finally we give a

general discussion of our results and several concluding remarks in Sec-

tion 4.

2. PRELIMIINARIES
in this section we summarize some of the results obtained in I

which are relevant for our discussion of the inelastic cross section.

W consider the collision of a spherical nucleus 1 on a deformed target
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nucleus 2, at sub-barrier energies. W study the Coulomb excitation of
low-lying states IM of spin| and magnetic quantum number of which ex-
citation energy EI. We further assume nucleus 1 to be a point charge
Zle; then from the set of coupled radial equations givenin Section 2 of

I we can extract the coefficients TJ which determine the amplitu-
2Ty 801

des fIOMO—J (8) for Coulomb excitation from the ground state [T ¥,> to

the final state |IM> (in coordinate system C of Ref. 6) through

LV

Frouamy(8,0) =% T /(2041) <0 0T M |JM >

IOMO -TM /—-———kaO " 0 00 0
’ 0

.0
(£) <tm IM|JIM > {5IIO s“n (1)

io,(n )+a, (n; )

-e I*;LQOIO} Ym(e,qp)

where 2, (L) is the orbital angular momentum in the incident (final) chan-
nel ko(k.) is the asymptotic wave number in the incident (final) channel
J is the conserved channel angular momentum, and cR(n) is the Coulomb
phase shift with n being the Sommerfeld parameter. In what follows we
consider the ground state to be O+ which fixes the value of J=24. The

inelastic cross section is then given by

do v

L.
an

P [f (e’¢)§2 (2)
Yy i 0 0+1M

where VI(yO) is the relative velocities of the heavy ions after (befo-
re) the collision. By using the on-energy-shell approximation for the
channel Green's function we were able to obtain the solution for the

matrix TFQII,JLOD in closed form

k—l/z c lk—l/z

Sy 20 ym1/2 )

where the matrix C is given by

1
Fargt,ar ” Ko, e er

Il"l(kI", kI)



Here the coupling matrices a have the form (assuming quadrupole cou~

pling)
( ) Y(2141) (21'+1)

Gorrrar T VO gy 0

, Lot 2 L L' I
x Y2z i+ (0¥ ) { ) (5)
0 0 O 2 I 2

and I,,,, (kI,,,kI) are the usual Coulomb excitation integrals given by
- .
LyngUhp) = fo dr Fyulipe) S5 ¥, () (®)

In Eq. (5) the quadrupole coupling strength dr,7r are defined by

o, <I||ME2)||1">
T 17
Apsgr = »/;

aary 2]
-1
I I 2
[(zm 21r'+1) | )J (7)
0 0 o

The quantity a,. is half the distance of closest approach for head-on

I
collision in channel B and is given by

2
~ leze

a

. (8

Z(E-E’I)
The Sommerfeld parameters Ny oare defined as usual by lezez/ﬁvI with
being the asymptotic relation velocity in the center of mass system in
Channel I. In the special case of a pure quadrupole rotational band des-

cription of the excited states in the target the couplings qI_)I,asdefi-

ned in (7) satisfy the simple relation

T+I'+2
——
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Our expression for T (Eq.(3)) guarantees that the resulting S-matrix,

defined by 1-2 Z7, is unitary

In order to carry out the numerical calculation we have used
Eq. (3) to obtain the following recursion equation that relates the am-
plitudes for the different processes. The details of the derivation of

this recursion relation is given in Appendix 1:

: : 1 -1
Rro = “trrp D+ 40, 1p* Crap THC_, Cer-a) (10)
where
] = -7 : -1
Rro Cr. D+ic, ] 8. (1)
and R,» = 1 and the symbol < refers to states with spin less than B _

00
The matrix element <I]D+’£g] 10>£gTO is given in terrns of RIO by

o . . -1=1 . =11 -1
grg = (W0 + Crg [1+7,C<<_l Cop+ Cpy L1420, C>II By (12)

where > implies all B is larger. The matrix elements <I|7|0> are iden-
tical to gro since for I#0.

" er]os = <rf Qe o> (13)

<I| D+7ﬁ§ﬁ
Eqs. (12) and (13) constitute the basis of our calculation of the ine-
lastic amplitudes. Implicit in our calculations is the usual semiclas-
sical assumptions of large R and n. The results in the following form
for the inelastic cross section
doI
—t = { 8
o 0,(8) P (0) (14)
where op(e) is the Rutherford cross section and P.(e) is the probabili-

ty for Coulomb exciting the state M and is determined basically by

970! %
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3. NUMERICAL RESULTS

Before entering into the details of our numerical results we
give below an account of our treatment of the energy loss. Although in
| we accounted for the energy loss through the introduction of the
ccnstant semiclassical energy loss factors, in this paper we try to
treat the energy loss more realistically. Since in our theory energy
loss comes in basically through the Coulomb excitations integrals,
I!L’JL(kI”kI) of Eq. (6), we therefore used the semiclassical theory of
Coulomb excitation to calculate the |'s and utilized the tables given
in Ref.8. Such a procedure to approximately account fortheenergy loss
in the excitation processes turns out to be quite reasonable especial~
ly in the calculation of the inelastic cross section, Ooy I1f, on the
other harid, we were to use the constant semiclassical energy loss fac-
tors of i the 02+(6) would show an almost monotonic decrease with eCM
(6) exhibits

and a maximum at 6=0. As we show below our calculated 9oy

a maximum at some small angle and drops to zero at 6=0 as it should’.

To be specific we shall consider below the system “9Ar+ 238y
at E]ab = 240 MeV. Although the center of mass energy corresponding to

the above E is slightly higher than the Coulomb barrier of 183 MeVv,

we shall igr!?)tr)e all nuclear effects in our calculation. W shall assu-
me a quadrupole rotational band structure for the excited states in233U
and shall ignore projectile excitation. Since the value of g for the
above system is 9.56, 9 it is clear that we must consider in our cal-
culation the coupling to all states with | < 18. This requirement is a
consequence of the approximate semiclassical relation between the ave-

rage angular momentum transferred, <at> , and 900 namely 7

<AR> = <Imax> = 2q0—>2 (]5)

W have used our recursion equations (10)-(13) using for the coupling
matrix ¢ the explicit form given in Eq. (4) with the 1's calculated
according to the prescription given previously. W have generated a
pure rotational band for 23y by taking the experimental value for the
first excited states to be 4% keV ? and used the rotational energy for-

mula EI = /i21(1+1)/2g. The results of our calculations are shown in
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Figs. 1-3. The elastic cross section normalized to the Rutherford
cross section is plotted in Fig.l . The rise of cr/cR back angles will,
of course, be modified if nuclear effects were included. Also shown
in Fig. 1 is the inelastic cross section 02+ for exciting the 25 sta-

te. Our results for o is qualitatively similar to what one expects

2+
for smaller 9asn It is interesting to observe that with increasing |

the peak in o 8) is shifted to larger angles and the right wing of

L
the cross section becomes flatter and flatter as shown in Fig. 2 until
finally the peak disappears completely starting at 7=16 (see Fig. 3).

It is important to note that our results for S0 and 0I+ satisfy the

unitarity sum rule at every angle, i.e.,
o 18 c
k] Ly (16)
R 1=2 °r

ft is worth noting that if we mock up some of the off-shell effects by
multiplying the reorientation matrices by a factor 2-3 and the coupling

matrices by 4.6, as was done in |, we would obtain peaking, in all

o (8) /o,(8)
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Fig.1 - The sub-barrier elastic cross section, normalized to Ops for the

= 240 MeV plotted vs. & " Also shown is the

40 + 238
system *VAr U at Elab ¢

inelastic cross section 02+,
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O’I#D a some nonzero angles. 1t is clear that the spin dependence of
our resulting Coulombexcitation probabilities PI fgf?- evaluated at
back angles shows amarked difference from the results of semiclassical
theories . Whereas exact quantum mechanical and semiclassical theories
show an initial rise ofPI as a function of increasing | and then,
after passing through a maximum, drops precipitantly as the excitation
of states with higher spins become classlcally forbidden, our results
show, on the other hand, a rather smooth decrease of PI with increa-
sing I. This failure of our theory in reproducing the exact quantum
mechanical and semiclassical results is a clear indication of the 1i-
mitations of the on-energy-shell-approximation. it is hoped, however,
that one might be able to account, approximately, for the off-shell
effects by usirig the 'simple OESA for the wave function (or amplitude )
as an input inhomogeneous term in an integral equation whose kernel
contains the off-shell parts of the channel function. It is further
hoped that iterative, and therefore less time-consuming, solutions of
this equation would suffice to bring the results closer to the exact
guantum mechanical or semiclassical results. In a future publication

we shall present an account of our endeavor mentioned above.

4. DISCUSSION AND CONCLUSION

In this paper we have discussed the consequences of adopting
the on-energy-shell approximation for the channel Green's function in
the coupled channels description of multiple Coulomb excitation in hea-
vy ion cpllisions. Our work in this paper is a natural exterision of the
results reported in the first part (1) of this series which dealt with
sub-barrier elastic scattering. Although in the present paper we have
improved upon our treatment in i of the energy loss in the different
excitation processes, the overall qualitative behavior of our results
differ considerably from those of the exact quantum mechanical and se-
miclassical treatments. This shortcoming of our approximations is cer-
tainly a consequence of our neglect of all off-shell effects. These
off-shell effects manifest themselves in the nonseparable form of the
r- and r' dependence of the channel Green's function. it is hoped, ho-
wever, that by isolating tne separable part of channel Green's func-

tion and calcuiating the corresponding wave function and amplitude, a
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simple estimate of the inelastic cross section at sub-barrier energies
becemes available. Furthermore, such an OESA wave function might serve
as an input inhomogenous part in an integral equation whose kemel con-
tains the principal value of the Green's function. It is our expecta-
tion that iterative and less time consuming solutions of such an inte-
gral equation could be obtained which would contain most of - the off-
-shell effects and thus would give comparable results to those obtai-
ned from exact quantum mechanical and semiclassical treatments. in the
third part of this series® we shall present the results of our program

above as well as develop a method for inclusing nuclear excitations.

APPENDIX 1

In this. appendix we derive the recursion relation Eg. (12),
and in our calculation. Our aim is to calculate the matrix element

<Il(l+ig)-1!0>5gr. First we write
(1 +2C) g, = 659 (.

We now define the projection operator PI which projects onto the I-
-state. We also define P_ and P, which project onto the space spanned
by all states with spin smaller than| and larger than I, respectively.
Since the quadrupole nature of the coupling requires that P, ¢ P =

=P, QP, =0 we, therefore, have for| #0

0+ iCII)gI + C’I<g< + iCI>g> =0 (1.2)
(I +4c )g, +iC g, =0 (1.3)
O+ ig«)g( + iC(IgI - SIO (1.4)

Solving (F.3) and (1.4) for g, and g, and substituting into Eq. (1.2)

and solving for gr we obtain
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_ _= : . -1 . -1 -1
gr = -afl + wﬂ + CI<(1 + w«) c_+tc. (1 + w») C>T]

<7 >
x ¢, (1 +ic_)-1 10 (1.5)
In the special case of | = 0 we have P(Q = 0 and g, = 0. Therefore,
(0 + iCOO)go = - ico>g>+ 1 (1.6)
(1 +3c g, =-ic %o (1.7)
Solving for g, we obtain
g, =1 +8  +cy (i+rc ) o170 (1.8)

Since the operator (1 + ’iC'<<)—l appearing in Eq. (1.5) acts onlyinthe
< = subspace we can rewrite it in terms of operators acting in smaller
sub-spaces. Specifically since the maximum spin in the < - subspace is

1-2, we have for <7-2|(1 + ig«)_llo >=g;_, the following

- . . -1 --1
grp = 0. iCry rop « Crp U 0 ) e 3

_ . -1
L ©Cr o (W +2C ) 7 8 (1.9)

where < implies smalier than 1-2. Defining now the matrix element

. . -1
Rp = ’LCI<(‘ +4c__) 870 (1.10)
with < implying smaller than|. W can combine (1.9) and (1.10) into
one equation namely
Br=-tCr 1291
=-14( 1,7 : -1 -1
o L Creg gog + Cropc0 w200 " Cpy 17 By



Eq. (1.11) is to be solved with the '"boundary condition'' Ry = 1, and
the matrix element 9 is obtained from Eq. (1.5) which are' rewritten
as

. - -1
+ CI>(] + v C>>) C>I XRI
(1.12)

_ , , -1
gr=0+1 Crp+Cri+ic ) c
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