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Derivations of the equilibrium values of occupation numbers are made
using three approaches, namely, the BOltzmann "elementary" one, the en-

semble method of Gibbs, and that of Darwin and Fowler as well.

Derivam-se os valores de equilibrio dos nimeros de ocupacdo em trés di~
ferentes abordagens, a saber, a "elementar” de Boltzmann, o método dos
ensembles de Gibbs, e também o de Darwin e Fowler. Fica assim estabe-

lecida, a equivaléncia desses métodos em paraestatistica.

1. INTRODUCTION

There are essentially three methods used in equilibrium statistical me-
chanics, namely, the Boltzmann method of identifying the equilibrium sta-
te with the most probable one; the Gibbs ensemble method of postulating
a canonical distribution; and the Darwin-Fowler method" of identifying
the equilibrium state with the average state. Most textbooks on statis-
tical mechanics include discussions of the first two methods. The in-
clusion into the text of the last method, which Schrt!dinger2 seems to
advocate, is less usual. The equivalence of those methods is usually
demonstrated for the ideal Boltzmann, Bose-Einstein, and Fermi-Dirac sta-
tistics. However, the equivalence is not guaranteed when the methodsare
applied to different statistics such as parastatistics®, where eachener-
gy level can afford up to some number k of particles, and can be regar-
ded as a generalization of the above mentioned statistics. |t seems de-
sirable to confirm the equivalence of those methods for parastatistics.

In most textbooks however discussions on parastatistics are rather rare.
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In his book Isihara* presents a brief discussion on parastatis-
tics and derives the equilibrium occupation numbers based on Boltzmann’s
rnethod; however, some clarification seems to be needed in his derivation.
In the following, we shall consider parastatistics for a system of
non-distinguishable particles and derive the equilibrium occupation num-
bers, by using the three methods mentioned above. In the derivations |,
the equivalence of those methods shall become clearer, specially between

Boltzmann, and Darwin-Fowler, approaches.

2. DERIVATION OF THE DISTRIBUTION FUNCTION

2.1 The Boltzmann method

h
h

In this approach, energy levels are grouped into cells such that the ,jt
cell contains mj levels. Identical particles belonging to the same J't
cell are assumed to have the same average energy, e: The N, particles
of the jth cell are distributed over all levels, ithhe cell,(7 in all pos-
sible allowed ways wj’ contributing with an energy ejnj to the system.

Thus, for a system of N identical particles, with a total energy E, one

has:

E = Z.ejnj 5 (z.1)
d.
N = EZn, s (2.2)
j,J
Win.} = 1 w,. 2.
{nJ ; w, R (2.3)

where W{n?;} is the total number of ways of distributing the particles

specified by the set {n?;} .

The equilibrium occupation numbers are then to be evaluated from the fol-

lowing maximization condition:

SanW + 3% (o +Be.)én. =0, (2.4)
J J J
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where a and g are Lagrange multipliers associated with constraints (2.1)

and (2.2). The major task is to find an expression for wl as a function
of r‘1. For Bose~Einstein and Fermi-Dirac statistics, ml is usually de-
rived separately by elementary methods. For parastatistics which allows
up to k particles in each level, we shall use the method of generating
functions. 1t is not difficult to see that the pertinent generatingfunc-

tion is given by

m, _ k1 m,
flz) = (1 + 2+ 2%+ ... zk) J =|E_z'___} J,.

n.

and w. is the coefficient of the term z J

&
1 d
“’j“‘.‘[ 7 f“”}
- dzJ

n.
J 2=0

. Hence,

n,
[:‘"FL‘] [, +n, - vk +1) - 1]
mjn.! . (-)° d d

v=0

(2.6)

vl (mj - v)! [nj - v(k+1)]!

Although expression (2.6) is exact, it is too complicated to be wuseful.

Ve thus rewrite (2.6) according to Cauchy's theorem®:

_ 1 (z)dz _ 1 dz (
W, = —— = — g . 2.7)
i o { g - fexp [0 (=1]
¢

where C is a closed path around the origin, and

_ . I_zk+1'l nJ.+_19v 2.8)
gj(z) =Xn - J — nz . .

z J

Since rni is supposed to be large, and gj(z) is analytic in the cut plane,

473



an integral of the typeof (2.7) can be approximately evaluated by the

method of the steepest descents’, which yields the result:

= n -1/2 X . . 2oL . 2.
w2 (anj gj(zoj) exp[}n¢7 gJ(ZOJ) + wJ__\ , (2.9)

where a is the angle that the steepest descent line makes with the real

axis, and 25 is the saddle point of g?;(z), determined by:

k
., . 1
4 o 1 (k—M)zO‘7 ) n‘7 + 1 (2.10)
g,=0= k+1 m Z. . )
o 9 1-z, . -z <t LY
04 0
Hence
n. + 1 1 k+ 1
J = - . (2.11).
. R - (k+1
m 3, 20 (k+1) _ "

Substituing (2.7) into (2.4), we obtain

w?,
A = 2.12
z‘ [“’j + (o + Bej):’énj 0, ( )
J
where
o= g L -
J 2t z g
C
= [Z’ITm g" )—|exp[m g (z + iaj] anoj . (2.13)

Since gé(z) is the same for each j, cf. Eq. (2.8), the same holds for ocJ,
and z .
oJ .

From (2.9), (2.12) and (2.13), we obtain
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z . =expla + Be,) . (2.14)
0 pla + B 3)
By combining (2.11) end (2.14), it follows that

n., + 1 ”n.
b - - ] - k + 1 (2.15)
m.

’
m.,

g exp[-(a + Baj)]- 1 exp[—(k+l) (o + Bej):l- 1

which is the result we set forth to derive.

2.2 The Gibbs Method

In this approach, the total energy of the system is not a constant, and
a canonical distribution is postulated. There is no need to group levels
into cells nor to find the associated multiplicities, One starts from

the partition function, defined as

@, = § exp 'B'Zen] s (2.16)
¥y [ o P°

n }
0

where p is the index of the energy levels, and the summation is to be
carried out over the set {np} of all possiblevaluesofnp which are

consistent with the conditions

N = Enp > (2']7)
Y]
and
np=0, 1, 2 ... k - (2.18)

The summations (2.16) are, however, cumbersome because of condition (2.
17). To remove this difficulty, we transform (2.16) into the grand ca-

nonical partition function:

7 = ZNQN =7 7 2 exp[—B' I ne :'
§=0 =0 {n )} o P°
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* ' np
=y ¥ om [Ze_s ep} . (2.19)

B N=0 '_ {np} p

The double summation (2.19) can be converted into a single one,free from

the restriction (2.17):

- ~ k+1
k . n -B'e _
2 =1 [ N [Ze_s ep] i|= i [z e ‘J ! (2.20)
n =0

= R
P 0 pZeBEp—1

The average total number of particles can be obtained from

9 1 ) k+ 1
N> =275 (4nZ) = ) . - — - . (2.21)
9z o {2—166 €p _ 1 (2 e B'ep) 7<+1_] }

Hence, the equilibrium occupation number is given by

n = 1 - k + .1 (2.22)

(z e B'%0)m1 o1 (g B B0y R

This is the same as (2,15), if we identify Z = e” and B8'=-8

2.3 The Darwin-Fowler Method

In this approach, the physical conditions are the same as those of the
Boltzmann method, namely, the total number of particles and the total
energy are fixed constants. However, the ortifice of grouping energy
levels into cells is eliminated. Without this artifice, the relative
probability of any allowedstate of the system becomes the same. There is
no most probable state to be identified as the equilibrium state. One
takes averages with respect to all permissible states and identifies the
equilibrium state with this average state. In parastatistics, each fie-

vel admits up to k particles, i.e., np = 0,1...k. Wren the permittad va-
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lues of n, are given in the set {np}, a state is uniquely defined. Thus,

denoting the number of ways to realize a state {np}, by W{np}, we have :

W = .
{np} il Y(np) ’ (2.23)
p
where
Yn) = 1, ifng =01,k
= 0 otherwise . (2.24)

The states defined by assigning values to nP must be compatible with the

restrictions

N=jn ,
(2.25)
E=)ne .
) po
Hence, the average occupation number can be defined as
> =t v Wi (2.26)
[ G {72“} p P
where
V'
G= ) W{np} R (2.27)
{no}

and the summations are to be carried out over all possible states {np}
which are compatible with (2.25). The task is, then, to evaluate (2.26)
and (2.27). For this purpose, we now introduce a generating function

defined by
Ny H,eee MEMLE, ..
F(x,y,z—:p,) = ¥ W{np} x y

{n
{ o}
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I Ty0s) (P

*x €
] ving) (ay Y, (2.28)
p n =0

where the summations are now to be carried out over all states without

restrictions, (2.25). Similar to the Boltzmann method, G can be identi-

fied with the coefficient of XI\I yE , in (2.28). Hence, applying Cauchy’s
theorem, we have
. r
--1 =E-1
G = (z—m,-)2 j‘dx(} dy x Y F(x,y,ep) . (2.29)

Applying the method of steepest descent, we obtain

-N-1  ~E-1
=z y F(xo,yo,ep) , (2.30)

where (aco,yo) is the saddle point to be determined from the equations

oF

X, Hod N+ DNF=0 , (2.31)
aF
Yo 3y, ~ (E+ 1)F =0 . (2.32)
From (2.31), we have
x
N ]=lerOF _, 20F (2.33)

Substituing (2.28) into (2.33), we obtain

3 b € n
¥ = el Yz ) (zy P) P
g %3z T ,~n3=0 p J



€
_ oyk + 1
] (xoyo )

J
= 2 x, =— &n
o ' oy ) - Sp
xoyo
€ €
ay ° (k+1) 2y )R
=1 — - " : (2.34)
- p - pyk + 1
Pl -y, 1~ (ey, °)
Hence,
1 R+ 1
n > = ~ , (2.35)
P € €
Py-1 _ py - (k+1) _
(xoyo ) 1 (xoyo ) !
which is the same result as given in (2.15) and (2.22), if we identify

o
X =e¢ and y,=e

3. CONCLUSION

The equivalence of the three methods, mentioned in the Introduction, is
shown for an ideal gas of identical particles which satisfy parastatis-
tics. The three methods, therefore, can be regarded as equivalent, inde-

pendent of the statistics.

The Boltzmann '‘elementary'' method, when applied to parastatistics, beco~
mes rather complex as compared to its application to Bose-Einstein or
Fermi-Dirac statistics. The mathematical apparatus needed becomes simi-

lar to that needed for the Darwin-Fowler method.

Though our derivations may seem a bit complicated, it is hoped that they

may clarify some points left out in the derivation by Isihara.
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