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The validity of Lyddane-Sachs-Teller (LST) relation in describing the behavior of the die- 
lectric constant in crystals is studied. We derive an expression for the dielectric constant 
which takes into account explicity both the LST contribution and the Debye-like contribution 
of the disorder. It is shown that the Debye-like t e m  is the predominant one or at least of 
same magnitude of the LST-term whenever a disorder mechanism is present The phase 
diagram for the activation energy related to the disorder will indicate the main dielectric 
properties of the crystal and will infom about the phonon structure. 

Estuda-se a validade da relaçào de Lydanne-Sachs-Teller (LST) na descrição do compoi- 
tamento da constante dielétrica em cristais. Derivamos uma expressão para a constante 
diéletnca que leva em conta, explicitamente, tanto a contribuição LST como a contribuição 
tipo Debye da desordem Mostra-se que o termo tipo Debye é o predominante ou, pelo menos, 
da mesma grandeza do termo LST, sempre que esteja presente um mecanismo de desordem 
O diagrama de fase para a energia de ativação relacionada a desordem irá indicar as carac, 
terísticas principais das propriedades dielétricas do cristal, bem como informar sobre a estrii- 
tura dos fonons. 

Recently, careful experimental ~ o r k ' , ' , ~  was performed in NaNO, and 
LiIO, with the aims: a) to venfy the validity of the generalized Lydanne- 
Sachs-Teller (LST) relation for those high dielectnc constant crystals; 
b) to try to tie the dielectric constant behavior as function of temperature 
to the frequency behavior of any possible soft mode; c) in the case of 
NANO,, to find out to what extent Cochran's soft mode model could 
explain the paraelectric-ferroelectric phase transition in a crystal of order- 
disorder type. Naturally, those questions asked above are closely related 
since if Cochran's soft mode model" fails to explain the phase transition, the 
Lyddane-Sachs-Teller relation5 also fails in predicting the increase of the 
dielectric constant at the critica1 temperature (T,). 
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If the crystal is of order-disorder type, we would expect that this crystal 
can be described at least by considering two sublattices. One would be 
a sublattice of "normal" oscillators and the other one would be a sublattice 
of random motion particles which is strongly related to the order-disorder 
mechanism. Besides, one would expect that the sublattice of random mo- 
tion particles would show a dielectric relaxation process which would be 
most likely of Debye relaxation type. Usually in the literature6,' both 
problems are treated separately mainly concerning ferroelectric-paraelec- 
tric transition. We would Iike to emphasize some important characteristics 
which turn out whenever one treats explicitly the contributions of both 
processes to the dielectric constant and to phase transition. 

Let us first consider the total dipole polarization for the two sublattices. 
The total dipole polarization P is a sum of two parts; one, E", is the dipole 
polarization due to electrons and atoms (or ions) which includes a11 pola- 
rization by displacement and a part Pd due to the brownian motion particles 
which usually are best described by a self-diffusion process defined by a 
correlation time z, = 7, exp [AUIkT] .  Here, AU is the activation energy 
for the jumping between two equivalent positions and z, obeys the Eyring's 
relationship z, = h/kT The electric displacement D is defined as D = E t 
+ 47rP = E E .  For our case, one has D = 4nPd + 4nP' + E, since P = P' + Pd . 
Dividing our expression for D by E, one has 

P 

So, our dielectric constant has two terms: one associeated to the "normal" 
oscillator sublattice denoted by E' and a term associated to the self-diffu- 
sion proçess (or Debye relaxation term) denoted by r,. 

Explicity expressions for c, and E' can be obtained using the normal pro- 
cedure found in the l i t e r a t ~ r e ~ , ~ .  Assuming that E, is of Debye relaxation 
type, the orientational part of the polarizability depends on the applied 
frequency o as for E - exp [iot] and the Debye polarizability is given by 

where z is the dielectric relaxation time and a, is the static orientational 
polarizability, the susceptibility x, is equal to cc,N/(l - io~)  and E(, is 
given by 



N being the number of particles. 

An expression for E' can be deduced by using the well known Clausius- 
Mosotti relation given by 

N, is the number of particles per unit volume (molecules or ions) and 
a, the polarizability defined as a = P/E,,, where Elo, is the local electric 
fíeld at the respective particle. Following Ref. 6, we can write the static 
dielectric constant for &'(O) as 

For high frequency, the ionic polarizability does not contribute to the 
dielectric constant because the inertia of the ions which means Pio, = O 
and &'(a)  is 

Still following Ref. 6, using the two-oscillator model for electrons and ions 
and taking P'=P,,+P,,,, one obtains a relationship between the ratio 
~'(O)/d(co) and the ratio between the frequency o, of longitudinal optical 
phonons and the frequency o, of transversal optical phonon given by 

which is the LST relation. Eq. (1) can be re-written then as 

or, in a more general way, 

471 aON Sj  o: 
&(O) = --- 

i - iwi + l o i l - w 2 - i o ~ .  J + &O,, 

(where Sj and oj are respectively the strengths and the frequencies of the 
harmonic oscillators describing the ionic motion) if one uses the two 
oscillator model described by Barker and Loudon8. It should be noted 
that the polarizability due to the Debye relaxation term can not be inclu- 



ded in the definition for /3 given by Eq. (4). This is because the local field 
which is effective in dipole orientation is likely to be inappreciably different 
from the externally applied field7 so the dielectric constant owing to a 
self-diffusion process does not satisfy the Clausius-Mossoti relation. 

Both Eqs. (8) and (9) deduced in a very simple way show many interesting 
features of the dielectric behavior of solids: l j  the LST relation is only strictly 
valid for crystals without possibilities of order-disorder or Ising-like degrees 
of freedom; 2j crystals for which the LST relation is valid should not show 
dispersion of the dielectric constant at low frequencies; 3) dispersion of 
the dielectric constant at low frequencies in which the real part of E falls 
smoothly with frequency might be a good indication of an order-disorder 
mechanism in the solid; 4) the order-disorder mechanism contribution to 
the dielectric constant falls as o-, so we expect that at high enough fre- 
quencies (hopefully below any of the TO phonons) the value of E will tend 
to that given by &'(O) of the LST relation; 5) it is obvious from Eqs. (8) 
and (9) that the variation of E with temperature might be due either to 
the softening of an o,, phonon or to the change of the relaxation time 
z, of the diffusion process or both; 6) phase transition may be due to the 
behavior of a "soft" phonon (in this case the activation energy AU = 0) 
or to the behavior of the order-disorder mechanism A U # O (in this case no 
o,, -+ O) or both. The activation energy AU = O and AU # O defines the 
two extreme cases. The Mason's relaxation dielectric expression

g 
for the 

term corresponding to the Debye relaxation term illustrates very well this 
situation because it is given explicitly in function of AU and 6 the distance 
between two equivalent positions. For AU = 0, 6 is zero and a, in Eqs. 
(8) and (9) vanishes. 

Figs. 1, 2 and 3 taken from Refs. 10, 11, and 12 illustrate the behavior of 
the dielectric constant as a function of co and T for NaNO, and LiIO, . 
In the case of NaNO,, as has been shown by many authors, the disorder 
mechanism is fundamentally a hindered rotation of the NO, ion which 
will make the dipole associated with the ion point in either the positive 
or negative b axis of the crystal. As a matter of fact, the dielectric constant 
behavior with o and T is dominateci by the first t e m  in Eqs. (8) and (9) 
but as the frequency increases wé expect E to tend to the value obtained 
by the LST relation for NaNO, ; this frequency is higher than that shown 
in Fig. 1. For LiIO, , we see from Fig. 3 that the limiting LST value of 
E(W) is attained at - 5MHz even though the identification of the relaxation 
mechanism is still under study. 
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Fig.1 - The real part of the dielectric constant (Ref. 10) of NaNO, as a function of frequency 
and the limiting value given by LST relation at high frequency. 

As a final remark, we can say that the self-diffusion process will also affect 
the linewidth of the phonons of the crystal. If the diffusion process can 
be described by the spectral density of the type z,/l + w2 T,', the linewidth 
of the phonons which is in some way related to the diffusion process will 
be proportional to this spectral density, which means that for small w, 
the linewidth might be overdamped. It is interesting to mention that, 
assuming the existence of a smooth dielectric dispersion as a strong evi- 
dente of an order-disorder mechanism involved, we would expect that 
KDP, BaTiO, , TGS, Rochelle Salt and many other crystals would follow 
Eq. (8) and (9). It is expected that hydrated ferroelectric crystals as for 
instance K,Fe(CNj, . 3 H 2 0  and a11 the hydrogen bonded crystals will 
follow also Eqs. (8) and (9). 
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TEMPERATURE 
Fig. 2 - Comparison between the static dielectric constant (Ref. 11) of N a N 0 2  as a function 
of ternperature and the LST vnlue. 

Fig. 3 - 
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So it seems that much effort should be exerted in determining an explicit 
relationship between phonons and disorder mechanism which lead to 
a hard core frequency at transition temperature. We strongly believe 
that the fact A U  $3 O at transition temperature is very important and it 
has been practically overlooked in present research on dielectric properties. 
Besides we think that a proper theory for dielectric properties of order- 
disoider crystals (including ferro and non-ferroelectric) should contain a 
Langevin equation describing the brownian motion particles and rate 
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. The relative diectric constant (Ref. 12) of LiIO, as a function of frequency compared 
LST value. 



equations for the population in a double well potential. A suitable com- 
bination of generalized Langevin equationl and dipole polarization rate 
equation given by Mason's dielectric relaxation theory would describe 
most of 'dielectric properties of order-disorder materiais. The effect of 
anharmonic self-energy terms on the Lyddane-Sachs-Teller relation cari 
be determined in a similar way to the one developed by Maradudin'" 
et ai. describing nonequilibrium processes in isotopically disorder crystals. 
It is possible that the formalism recently developed by M. LaxI5 woulcl 
be very helpful for establishing these sets of equations. 
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